Learn More
Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar(More)
The oleaginous yeast Yarrowia lipolytica can accumulate up to 38% of its dry weight (DW) as lipids. Factors involved in lipid accumulation, particularly triglycerides, are not well identified. Using different mutations in the glycerol-3-phosphate (G3P) shuttle pathway (Δgut2 affecting the anabolic dehydrogenase or overexpressing GPD1 affecting the catabolic(More)
Five isoforms of acyl-CoA oxidase (Aox), designated Aox1p to Aox5p, constitute a 443-kD heteropentameric complex containing one polypeptide chain of each isoform within the peroxisomal matrix of the yeast Yarrowia lipolytica. Assembly of the Aox complex occurs in the cytosol and precedes its import into peroxisomes. Peroxisomal targeting of the Aox complex(More)
The oleaginous yeast Yarrowia lipolytica is known to inhabit various lipid-containing environments. One of the most striking features in this yeast is the presence of several multigene families involved in the metabolic pathways of hydrophobic substrate utilization. The complexity and the multiplicity of these genes give Y. lipolytica a wide capability(More)
In Yarrowia lipolytica, targeted gene replacement occurs only with long length (1 kb) homologous flanking fragments, as this yeast preferentially uses the non-homologous end-joining mechanism (NHEJ) for DNA repair over homologous recombination (HR). To improve the frequency of HR, we identified and disrupted the KU70 and KU80 genes responsible for double(More)
The non-conventional yeast Yarrowia lipolytica produces an extracellular lipase encoded by the LIP2 gene. Mutant strains with enhanced productivity were previously obtained either by chemical mutagenesis or genetic engineering. In this work, we used one of these mutants, named LgX64.81 to select new overproducing strains following by amplification of the(More)
Development of a high-throughput eukaryotic screening procedure is important to increase success in obtaining improved enzymes through directed enzyme evolution. This procedure was developed for the yeast Yarrowia lipolytica which becomes the second eukaryotic host for this purpose. The extracellular lipase Lip2 was used as expressed enzyme but this system(More)
tA novel approach to trigger lipid accumulation and/or citrate production in vivo through the inactivation of the 2-methyl-citrate dehydratase in Yarrowia lipolytica was developed. In nitrogen-limited cultures with biodiesel-derived glycerol utilized as substrate, the phd1 mutant (JMY1203) produced 57.7 g/L of total citrate, 1.6-fold more than the wild-type(More)
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However,(More)
We describe unusual ergosterol- and ceramide-rich (ECR) domains in the membrane of yeast peroxisomes. Several key features of these detergent-resistant domains, including the nature of their sphingolipid constituent and its unusual distribution across the membrane bilayer, clearly distinguish them from well characterized detergent-insoluble lipid rafts in(More)