Learn More
We present two major advances in preclinical fluorescence-enhanced diffuse optical tomography (fDOT) system and assess its performance. It is now possible to perform experiments without adaptation liquid or a glass plate over the animal, and our system is equipped with a filter wheel in order to discriminate two injected fluorophores. Evaluation carried out(More)
Over the last few years, near-infrared (NIR) fluorescence imaging has witnessed rapid growth and is already used in clinical trials for various procedures. However, most clinically compatible imaging systems are optimized for large, open-surgery procedures. Such systems cannot be employed during head and neck oncologic surgeries because the system is not(More)
We present in vivo experiments conducted with a new fluorescence diffuse optical tomographic (fDOT) system on cancerous mice bearing mammary murine tumors. We first briefly present this new system that has been developed and its associated reconstruction method. Its main specificity is its ability to reconstruct the fluorescence yield even in heterogeneous(More)
Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. The ultrasound provides morphological information about the prostate, while the optical system detects and locates fluorophore-marked tumors. A tissue-mimicking phantom, which is representative of prostate tissues both(More)
Fluorescence imaging locates fluorescent markers that specifically bind to targets; like tumors, markers are injected to a patient, optimally excited with near-infrared light, and located thanks to backward-emitted fluorescence analysis. To investigate thick and diffusive media, as the fluorescence signal decreases exponentially with the light travel(More)
Photon density and photon flux are widely used to model the measurable quantity in diffuse optical tomography problems. However, it is not these two quantities that are actually measured, but rather the radiance accepted by the detection system. We provide a theoretical analysis of the model deviations related to the choice of the measurable quantity-either(More)
Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but(More)
This paper addresses the inverse problem of time-resolved (fluorescence) diffuse optical tomography from temporal moments of the measurements. A methodology that enables one to provide fairly comparable reconstructions is presented. The proposed reconstruction methodology is applied to infinite medium synthetic phantoms in the transmission geometry.(More)
The problem of fluorescence diffuse optical tomography consists in localizing fluorescent markers from near-infrared light measurements. Among the different available acquisition modalities, the time-resolved modality is expected to provide measurements of richer information content. To extract this information, the moments of the time-resolved measurements(More)
This paper is devoted to the Fluorescence Diffuse Optical Tomography. This inverse problem relies on an iterative algorithm based on solutions of partial differential equations. The goal of the paper is to present a multiresolution technique applied to these equations, with the objective of computation complexity reduction. The effectiveness of the approach(More)