Learn More
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity,(More)
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus(More)
It is now clearly established that the brain has the capability of synthesizing various biologically active steroids including 17-hydroxypregnenolone (17OH-Delta(5)P), 17-hydroxyprogesterone (17OH-P), dehydroepiandrosterone (DHEA) and androstenedione (Delta(4)). However, the presence, distribution and activity of cytochrome P450 17alpha-hydroxylase/C17,(More)
The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the(More)
Previous studies conducted in guinea pig, rat and rabbit have revealed that crude extracts from Parkia biglobosa, Stereospermum kunthianum and Biophytum petersianum exert hypotensive and/or hypoglycemic activities. Since corticosteroids are involved in the control of arterial blood pressure and glycemia, we have investigated the possible effects of these(More)
Anorexia nervosa is a severe eating disorder often associated with physical hyperactivity and is more frequently observed in female sex. Activity-Based Anorexia (ABA) model combines physical activity (PA) and reduced food intake and thus allows a better understanding of the mechanisms underlying anorexia nervosa. We aimed to assess sex differences in(More)
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with(More)
  • 1