Jean Luc Lachaud

Learn More
BACKGROUND/HYPOTHESIS During parabolic flight, in the standing position, changes are partly due to an acute shift in fluid between the lower extremities, the head and the thorax (Vaïda P, et al. J Appl Physiol 1997; 82:1091-7; and Bailliart O, et al. J Appl Physiol 1998; 85:2100-5). We hypothesized that modifications of parasympathetic activity associated(More)
Variations in gravity [head-to-foot acceleration (Gz)] induce hemodynamic alterations as a consequence of changes in hydrostatic pressure gradients. To estimate the contribution of the lower limbs to blood pooling or shifting during the different gravity phases of a parabolic flight, we measured instantaneous thigh and calf girths by using strain-gauge(More)
The volume-pressure relationship of the lung was studied in six subjects on changing the gravity vector during parabolic flights and body posture. Lung recoil pressure decreased by approximately 2.7 cmH(2)O going from 1 to 0 vertical acceleration (G(z)), whereas it increased by approximately 3.5 cmH(2)O in 30 degrees tilted head-up and supine postures. No(More)
Chest wall mechanics was studied in four subjects on changing gravity in the craniocaudal direction (G(z)) during parabolic flights. The thorax appears very compliant at 0 G(z): its recoil changes only from -2 to 2 cmH(2)O in the volume range of 30-70% vital capacity (VC). Increasing G(z) from 0 to 1 and 1.8 G(z) progressively shifted the volume-pressure(More)
Data from the Spacelab Life Sciences-1 (SLS-1) mission have shown sustained but moderate increase in pulmonary diffusing capacity (DL). Because of the occupational constraints of the mission, data were only obtained after 24 h of exposure to microgravity. Parabolic flights are often used to study some effects of microgravity, and we measured changes in DL(More)
Hyperoxia increases maximum airway contractility in newborn guinea pigs and immature rats. Studies examining the mechanisms of hyperoxia-induced airway hyperresponsiveness have focused on contractile mechanisms, although excessive airway narrowing could be due to impaired relaxation. Our objective was to determine the effects of hyperoxia on airway(More)
We studied the respiratory output in five subjects exposed to parabolic flights [gravity vector 1, 1.8 and 0 gravity vector in the craniocaudal direction (Gz)] and when switching from sitting to supine (legs bent at the knees). Despite differences in total respiratory compliance (highest at 0 Gz and in supine and minimum at 1.8 Gz), no significant changes(More)
  • 1