Jean-Louis Dillenseger

Learn More
The CT uroscan consists of three to four time-spaced acquisitions of the same patient. After registration of these acquisitions, the data forms a volume in which each voxel contains a vector of elements corresponding to the information of the CT uroscan acquisitions. In this paper we will present a segmentation tool in order to differentiate the anatomical(More)
The goal of our work is to propose a fast ultrasound image simulation from CT volumes. This method is based on a model elaborated by Bamber and Dickinson that predict the appearance and properties of a B-Scan ultrasound image from the distribution of point scatterers. We propose to extend this model for the standard medical ultrasound image simulation by(More)
This paper describes a fast and fully automatic method for liver vessel segmentation on computerized tomography scan preoperative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the minimum-cut/maximum-flow energy minimization framework. This method represents an original way to(More)
Moments and moment invariants have become a powerful tool in pattern recognition and image analysis. Conventional methods to deal with color images are based on RGB decomposition or graying, which may lose some significant color information. In this paper, by using the algebra of quaternions, we introduce the quaternion Zernike moments (QZMs) to deal with(More)
This paper is aimed at understanding epileptic patient disorders through the analysis of surface electroencephalograms (EEG). It deals with the detection of spikes or spike-waves based on a nonorthogonal wavelet transform. A multilevel structure is described that locates the temporal segments where abnormal events occur. These events are then visually(More)
An improved and very fast algorithm dealing with the extraction of vessels in three-dimensional imaging is described. The approach is based on geometrical moments and a local cylindrical approximation. A robust estimation of vessel and background intensity levels, position, orientation, and diameter of the vessels with adaptive control of key parameters, is(More)
This paper presents a three-dimensional edge operator aimed at the detection of anatomical structures in medical imaging. It uses the spatial moments of gray level surface, and operates in three dimensions with any window size. It allows us to estimate the location and the contrast surface, as well as the surface orientation. The computation of the discrete(More)
This paper presents a three-dimensional (3-D) shape reconstruction/intrapatient rigid registration technique used to establish a Nephron-Sparing Surgery preoperative planning. The usual preoperative imaging system is the Spiral CT Urography, which provides successive 3-D acquisitions of complementary information on kidney anatomy. Because the kidney is(More)
This letter describes a temperature-varying attenuation approach for preoperative planning of high intensity ultrasound interstitial targeted therapy. Such approach is mainly aimed at the treatment of primary liver cancer for which a precise lesion control must be achieved. It is shown through simulation that the shape and size of the resulting necrotic(More)