Learn More
This paper describes a modeling method of the tissue temperature evolution over time in hyper or hypothermia. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be(More)
This paper describes a new method for the three-dimensional (3-D) tracking and the quantification of blood vessels from magnetic resonance angiography (MRA). The approach is based on 3-D geometrical moments and consists of the following steps: (1) interactive selection of 3-D seed points; (2) automatic tracking of the vessels; (3) local computation of both(More)
Moments and moment invariants have become a powerful tool in pattern recognition and image analysis. Conventional methods to deal with color images are based on RGB decomposition or graying, which may lose some significant color information. In this paper, by using the algebra of quaternions, we introduce the quaternion Zernike moments (QZMs) to deal with(More)
The CT uroscan consists of three to four time-spaced acquisitions of the same patient. After registration of these acquisitions, the data forms a volume in which each voxel contains a vector of elements corresponding to the information of the CT uroscan acquisitions. In this paper we will present a segmentation tool in order to differentiate the anatomical(More)
This paper describes a fast and fully automatic method for liver vessel segmentation on computerized tomography scan preoperative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the minimum-cut/maximum-flow energy minimization framework. This method represents an original way to(More)
Within a specific medical application, the primary liver cancer curative treatment by a percutaneous high intensity ultrasound surgery, our study was designed to propose a fast 3D semi-automatic segmentation method of the liver, the tumor and the hepatic vascular networks. This method is characterized by a graph description of contrast medium injected CT(More)
Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data(More)
An improved and very fast algorithm dealing with the extraction of vessels in three-dimensional imaging is described. The approach is based on geometrical moments and a local cylindrical approximation. A robust estimation of vessel and background intensity levels, position, orientation, and diameter of the vessels with adaptive control of key parameters, is(More)
This paper presents a three-dimensional (3-D) shape reconstruction/intrapatient rigid registration technique used to establish a Nephron-Sparing Surgery preoperative planning. The usual preoperative imaging system is the Spiral CT Urography, which provides successive 3-D acquisitions of complementary information on kidney anatomy. Because the kidney is(More)