Jean-Louis Bény

Learn More
To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and(More)
We investigated heterocellular communication in rat mesenteric arterial strips at the cellular level using confocal microscopy. To visualize Ca(2+) changes in different cell populations, smooth muscle cells (SMCs) were loaded with Fluo-4 and endothelial cells (ECs) with Fura red. SMC contraction was stimulated using high K(+) solution and Phenylephrine.(More)
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells(More)
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by(More)
Investigating the recruitment and synchronization of smooth muscle cells (SMCs) is the key to understanding the physical mechanisms leading to contraction and spontaneous diameter oscillations of arteries, called vasomotion. We improved a method that allows the correlation of calcium oscillations (flashing) of individual SMCs with mean calcium variations(More)
It is well-known that cyclic variations of the vascular diameter, a phenomenon called vasomotion, are induced by synchronous calcium oscillations of smooth muscle cells (SMCs). However, the role of the endothelium on vasomotion is unclear. Some experimental studies claim that the endothelium is necessary for synchronization and vasomotion, whereas others(More)
In vitro, different techniques are used to study the smooth muscle cells' calcium dynamics and contraction/relaxation mechanisms on arteries. Most experimental studies use either an isometric or an isobaric setup. However, in vivo, a blood vessel is neither isobaric nor isometric nor isotonic, as it is continuously submitted to intraluminal pressure(More)
Hydrogen peroxide can be released by different cells such as the nerves, the endothelial or phagocytotic white blood cells which can all interact with vascular smooth muscles. We show that hydrogen peroxide hyperpolarizes and relaxes pig coronary artery smooth muscle cells. The possibility that the endothelium derived hyperpolarizing factor released by the(More)
Using strips of the left descending branch of the pig coronary artery in vitro, we show that smooth muscle cells are hyperpolarized by isoproterenol, a beta-agonist, independently of the presence or absence of intact endothelium. This hyperpolarization is transmitted to the lining endothelial cells in intact coronary strips. On the contrary, the cultured(More)
The aim of the study was to determine which cholinergic muscarinic receptor subtype is responsible for the endothelium-dependent vasodilatation evoked by acetylcholine (ACh) in mouse arteries. Endothelium-dependent relaxations were evaluated using isometric tension measurement of ring from femoral and aortic artery of M1, M2, and M3 knockout (KO) mice.(More)