Jean Karim Zinzindohoue

Learn More
The Transport Layer Security (TLS) protocol supports various authentication modes, key exchange methods, and protocol extensions. Confusingly, each combination may prescribe a different message sequence between the client and the server, and thus a key challenge for TLS implementations is to define a composite state machine that correctly handles these(More)
We present a new, completely redesigned, version of F*, a language that works both as a proof assistant as well as a general-purpose, verification-oriented, effectful programming language. In support of these complementary roles, F* is a dependently typed, higher-order, call-by-value language with _primitive_ effects including state, exceptions, divergence(More)
In response to increasing demand for elliptic curve cryptography, and specifically for curves that are free from the suspicion of influence by the NSA, new elliptic curves such as Curve25519 and Curve448 are currently being standardized, implemented, and deployed in major protocols such as Transport Layer Security. As with all new cryptographic code, the(More)
The record layer is the main bridge between TLS applications and internal sub-protocols. Its core functionality is an elaborate form of authenticated encryption: streams of messages for each sub-protocol (handshake, alert, and application data) are fragmented, multiplexed, and encrypted with optional padding to hide their lengths. Conversely, the(More)
The HTTPS ecosystem is the foundation on which Internet security is built. At the heart of this ecosystem is the Transport Layer Security (TLS) protocol, which in turn uses the X.509 publickey infrastructure and numerous cryptographic constructions and algorithms. Unfortunately, this ecosystem is extremely brittle, with headline-grabbing attacks and(More)
  • 1