Jean-Jacques Quisquater

Learn More
In this paper we describe a differential fault attack technique working against Substitution-Permutation Networks, and requiring very few faulty ciphertexts. The fault model used is realistic, as we consider random faults affecting bytes (faults affecting one only bit are much harder to induce). We implemented our attack on a PC for both the AES and KHAZAD.(More)
In this paper we describe a new identity-based signcryption (IBSC) scheme built upon bilinear maps. This scheme turns out to be more efficient than all others proposed so far. We prove its security in a formal model under recently studied computational assumptions and in the random oracle model. As a result of independent interest, we propose a new provably(More)
In March 2009, the Université catholique de Louvain elected its President using a custom deployment of the Helios web-based open-audit voting system. Out of 25,000 potential voters, 5000 registered, and almost 4000 voted in each round of the election. The precision of the voting system turned out to be crucial: in the first round, the leader came short of(More)
Group Diffie-Hellman protocols for Authenticated Key Exchange (AKE) are designed to provide a pool of players with a shared secret key which may later be used, for example, to achieve multicast message integrity. Over the years, several schemes have been offered. However, no formal treatment for this cryptographic problem has ever been suggested. In this(More)
We present a new identity based scheme based on pairings over elliptic curves. It combines the functionalities of signature and encryption and is provably secure in the random oracle model. We compare it with Malone-Lee’s one from security and efficiency points of view. We give a formal proof of semantical security under the Decisional Bilinear(More)
Most present symmetric encryption algorithms result from a tradeoff between implementation cost and resulting performances. In addition, they generally aim to be implemented efficiently on a large variety of platforms. In this paper, we take an opposite approach and consider a context where we have very limited processing resources and throughput(More)
Side-channel attacks are a serious threat to implementations of cryptographic algorithms. Secret information is recovered based on power consumption, electromagnetic emanations or any other form of physical information leakage. Template attacks are probabilistic sidechannel attacks, which assume a Gaussian noise model. Using the maximum likelihood principle(More)