Learn More
BACKGROUND Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan(More)
BACKGROUND Pharmacokinetic studies have shown that the small intestine is the major site of absorption for many flavonoid glucosides. Flavonoids are generally present as glycosylated forms in plants and foods, but there is increasing evidence that the forms reaching the systemic circulation are glucuronidated, sulphated and methylated derivatives. Hence,(More)
Human tissues such as liver, small intestine, spleen and kidney contain a cytosolic beta-glucosidase (CBG) that hydrolyses various beta-d-glycosides, but whose physiological function is not known. Here, we describe the first heterologous expression of human CBG, a system that facilitated a detailed assessment of the enzyme specificity towards dietary(More)
The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important(More)
The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of(More)
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the(More)
To improve the enzymatic hydrolysis (saccharification) of lignocellulosic biomass by Trichoderma reesei, a set of genes encoding putative polysaccharide-degrading enzymes were selected from the coprophilic fungus Podospora anserina using comparative genomics. Five hemicellulase-encoding genes were successfully cloned and expressed as secreted functional(More)
Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide(More)
Endo-beta-1,4-xylanases are key enzymes in the degradation of arabinoxylans, the main non-starch polysaccharides from grain cell walls. Due to the heterogeneity of arabinoxylans, xylanases with different characteristics are required in industrial applications but the choice of the enzyme is still largely empirical. Although the classification into glycoside(More)
Two genes encoding family 11 endo-(1,4)-beta-xylanases from Penicillium griseofulvum (PgXynA) and Penicillium funiculosum (PfXynC) were heterologously expressed in Escherichia coli as glutathione S-transferase fusion proteins, and the recombinant enzymes were purified after affinity chromatography and proteolysis. PgXynA and PfXynC were identical to their(More)