Learn More
BACKGROUND Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan(More)
Microbial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two(More)
Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide(More)
BACKGROUND To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties. This demands the set-up of high-throughput screening methods. Several(More)
BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. RESULTS First, P. cinnabarinus growth conditions were(More)
BACKGROUND The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome. RESULTS PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module(More)
BACKGROUND Enzymatic breakdown of lignocellulosic biomass is a known bottleneck for the production of high-value molecules and biofuels from renewable sources. Filamentous fungi are the predominant natural source of enzymes acting on lignocellulose. We describe the extraordinary cellulose-deconstructing capacity of the basidiomycete Laetisaria arvalis, a(More)
The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel,(More)
BACKGROUND The understanding of enzymatic polysaccharide degradation has progressed intensely in the past few years with the identification of a new class of fungal-secreted enzymes, the lytic polysaccharide monooxygenases (LPMOs) that enhance cellulose conversion. In the fungal kingdom, saprotrophic fungi display a high number of genes encoding LPMOs from(More)
Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to cleave the ester bond between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid. Although their potential use for enhanced enzymatic biomass degradation and synthesis of valuable chemicals renders them attractive research targets for biotechnological applications,(More)