Learn More
The DEAD-box helicase DP103 (Ddx20, Gemin3) is a multifunctional protein that interacts with Epstein-Barr virus nuclear proteins (EBNA2/EBNA3) and is a part of the spliceosomal small nuclear ribonucleoproteins complex. DP103 also aggregates with the micro-RNA machinery complex. We have previously shown that DP103 interacts with the nuclear receptor(More)
Placental hypoperfusion causes cellular hypoxia and is associated with fetal growth restriction and preeclampsia. In response to hypoxia, the repertoire of genes expressed in placental trophoblasts changes, which influences key cellular processes such as differentiation and fusion. Diverse miRNAs were recently found to modulate the cellular response to(More)
Tight regulation of luteinizing hormone-beta subunit (LHbeta) expression is critical for differentiation and maturation of mammalian sexual organs and reproductive function. Two transcription factors, steroidogenic factor-1 (SF-1) and early growth response-1 (Egr-1), play a central role in activating LHbeta promoter, and the synergy between these two(More)
Placental trophoblasts form the interface between the fetal and maternal environments and serve to limit the maternal-fetal spread of viruses. Here we show that cultured primary human placental trophoblasts are highly resistant to infection by a number of viruses and, importantly, confer this resistance to nonplacental recipient cells by exosome-mediated(More)
Members of the DEAD-box family of helicases, distinguished by a core characteristic sequence of Asp-Glu-Ala-Asp, are expressed in a wide range of prokaryotes and eukaryotes and exhibit diverse cellular functions, including DNA transcription, recombination and repair, RNA processing, translation, and posttranslational regulation. Although ubiquitous, the(More)
Early in pregnancy, trophoblast invasion into the decidua and inner myometrium is essential for establishment of proper implantation, maternal-fetal exchange, and immunological tolerance of the feto-placental allograft. Unlike villous trophoblasts (VTs), extravillous trophoblasts (EVTs) are unique in their capacity to invade the maternal decidua and(More)
Endogenous microRNAs (miRNAs) post-transcriptionally regulate mRNA and protein expression during tissue development and function. Whereas adaptation to environmental insults are tightly regulated in human tissues, the role of miRNAs and miRNA biogenesis proteins in this context is inadequately explored. We sought to analyse the expression of the key RNAi(More)
Acting through degradation of target mRNA or inhibition of translation, microRNAs (miRNAs) regulate development, differentiation, and cellular response to diverse cues. We analyzed changes in miRNA expression in human placental trophoblasts exposed to hypoxia, which may result from hypoperfusion and placental injury. Using an miRNA microarray screen,(More)
MicroRNAs (miRNAs) constitute a large family of small noncoding RNAs that are encoded by the genomes of most organisms. They regulate gene expression through posttranscriptional mechanisms to attenuate protein output in various genetic networks. The discovery of miRNAs has transformed our understanding of gene regulation and sparked intense efforts intended(More)
Among different types of small RNA molecules, distinct types of microRNAs (miRNAs) are expressed in many cell types, where they modulate RNA stability and translation, thus controlling virtually every aspect of tissue development, proliferation, differentiation, and function. Aberrant miRNA expression has been linked to discrete pathologic processes. As the(More)