Learn More
Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary(More)
Systematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological(More)
Many human inherited neurodegenerative disorders are characterized by loss of balance due to cerebellar Purkinje cell (PC) degeneration. Although the disease-causing mutations have been identified for a number of these disorders, the normal functions of the proteins involved remain, in many cases, unknown. To gain insight into the function of proteins(More)
To initiate studies on how protein-protein interaction (or "interactome") networks relate to multicellular functions, we have mapped a large fraction of the Caenorhabditis elegans interactome network. Starting with a subset of metazoan-specific proteins, more than 4000 interactions were identified from high-throughput, yeast two-hybrid (HT=Y2H) screens.(More)
The recently completed Caenorhabditis elegans genome sequence allows application of high-throughput (HT) approaches for phenotypic analyses using RNA interference (RNAi). As large phenotypic data sets become available, "phenoclustering" strategies can be used to begin understanding the complex molecular networks involved in development and other biological(More)
Several attempts have been made to systematically map protein-protein interaction, or 'interactome', networks. However, it remains difficult to assess the quality and coverage of existing data sets. Here we describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our(More)
Many cancer-associated genes remain to be identified to clarify the underlying molecular mechanisms of cancer susceptibility and progression. Better understanding is also required of how mutations in cancer genes affect their products in the context of complex cellular networks. Here we have used a network modeling strategy to identify genes potentially(More)
To provide accurate biological hypotheses and elucidate global properties of cellular networks, systematic identification of protein-protein interactions must meet high quality standards.We present an expanded C. elegans protein-protein interaction network, or 'interactome' map, derived from testing a matrix of approximately 10,000 x approximately 10,000(More)
Information on protein-protein interactions is of central importance for many areas of biomedical research. At present no method exists to systematically and experimentally assess the quality of individual interactions reported in interaction mapping experiments. To provide a standardized confidence-scoring method that can be applied to tens of thousands of(More)
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization.(More)