Jean-François Ghiglione

Learn More
Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm(More)
We analyzed the impact of copper mine tailing discharges on benthic Archaea and Bacteria around the city of Chanaral in northern Chile. Quantitative PCR (Q-PCR) showed that the bacteria dominated the prokaryotic community at both sites, but only the bacteria showed a decrease in abundance in the copper-contaminated site. Q-PCR on reverse transcripts(More)
Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs) contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of(More)
Heterotrophic bacterial communities in marine environments are exposed to a heterogeneous mixture of dissolved organic compounds with different bioreactivity that may control both their activity and composition. The coastal environment is an example of a mixing area where recalcitrant allochthonous organic matter from rivers can encounter labile organic(More)
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of(More)
In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located(More)
  • 1