Jean-François Donati

Learn More
The Chandra X-ray observatory monitored the single cool star, AB Doradus, continuously for a period lasting 88 ksec (1.98Prot) in 2002 December with the LETG/HRC-S. The X-ray lightcurve shows rotational modulation, with three peaks that repeat in two consecutive rotation cycles. These peaks may indicate the presence of compact emitting regions in the(More)
We present in this paper the first results of a spectropolarimetric analysis of a small sample (∼ 20) of active stars ranging from spectral type M0 to M8, which are either fully-convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully-convective stars. The present paper focuses on 5 stars(More)
We have used a doppler tomographic analysis to conduct a deep search for the starlight reflected from the planetary companion to HD 75289. In 4 nights on VLT2/UVES in January 2003, we obtained 684 high resolution échelle spectra with a total integration time of 26 hours. We establish an upper limit on the planet’s geometric albedo p < 0.12 (to the 99.9%(More)
Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating,(More)
We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0–M3), i.e. above the full convection(More)
The magnetic field topology plays an important role in the understanding of stellar magnetic activity. While it is widely accepted that the dynamo action present in low-mass partially convective stars (e.g., the Sun) results in predominantly toroidal magnetic flux, the field topology in fully convective stars (masses below ∼ 0.35 M⊙) is still under debate.(More)
Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The(More)
Among the A/B stars, about 5% host large-scale organised magnetic fields. These magnetic stars show also abundance anomalies in their spectra, and are therefore called the magnetic Ap/Bp stars. Most of these stars are also slow rotators compared to the normal A and B stars. Today, one of the greatest challenges concerning the Ap/Bp stars is to understand(More)
We report the discovery, using FORS1 at the ESO-VLT and ESPaDOnS at the CFHT, of magnetic fields in the young A-type stars HD 101412, V380 Ori and HD 72106A. Two of these stars (HD 101412 and V380 Ori) are pre-main sequence Herbig Ae/Be (HAeBe) stars, while one (HD 72106A) is physically associated with a HAeBe star. Remarkably, evidence of surface abundance(More)