Jean-François Dayen

  • Citations Per Year
Learn More
The construction of soft and processable organic material able to display metallic conduction properties-a large density of freely moving charges-is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other(More)
Charge transport in networks of nanoparticles linked by molecular spacers is investigated. Remarkably, in the regime where cotunneling dominates, the molecular signature of a device is strongly enhanced. We demonstrate that the resistance ratio of identical networks with different molecular spacers increases dramatically, from an initial value of 50 up to(More)
We investigate if the functionality of spin crossover molecules is preserved when they are assembled into an interfacial device structure. Specifically, we prepare and investigate gold nanoparticle arrays, into which room-temperature spin crossover molecules are introduced, more precisely, [Fe(AcS-BPP)2](ClO4)2, where AcS-BPP =(More)
Integration of nanoparticles (NPs) into nanodevices is a challenge for enhanced sensor development. Using NPs as building blocks, a bottom-up approach based on one-pot morphogen-driven electroclick chemistry is reported to self-construct dense and robust conductive Fe3O4 NP films. Deposited covalent NP assemblies establish an electrical connection between(More)
A co-tunneling charge-transfer process dominates the electrical properties of a nanometer-sized "slice" in a nanoparticle network, which results in universal scaling of the conductance with temperature and bias voltage, as well as enhanced spintronics properties. By designing two large (10 μm) electrodes with short (60 nm) separation, access is obtained to(More)
We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact(More)
Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is observed for a record junction area of up to 100 µm2 containing millions of metal islands. Such(More)
Interparticle charge hopping severely limits the integration of colloidal nanocrystals films for optoelectronic device applications. We propose here to overcome this problem by using high aspect ratio interconnects made of wide electrodes separated by a few tens of namometers, a distance matching the size of a single nanoplatelet. The semiconducting(More)