Jean-François Bach

Learn More
Progression to destructive insulitis in nonobese diabetic (NOD) mice is linked to the failure of regulatory cells, possibly involving T helper type 2 (Th2) cells. Natural killer (NK) T cells might be involved in diabetes, given their deficiency in NOD mice and the prevention of diabetes by adoptive transfer of ␣ / ␤ double-negative thymocytes. Here, we(More)
BACKGROUND Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the(More)
The incidence of type 1 diabetes (T1D) shows a worrying tendency for a steady increase in Western countries. Along the line of the hygiene hypothesis, evidence accumulates to suggest that this increase is explained by the decrease of infections due to improved hygiene and medical care. This article presents a review of epidemiological data and of the main(More)
Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with(More)
The nonobese diabetic (NOD) mouse is a well-recognised animal model of spontaneous autoimmune insulin-dependent diabetes mellitus. The disease is T-cell mediated, involving both CD4 and CD8 cells. Its progress is controlled by a variety of regulatory T cells. An unprecedented number of immunological treatments have been assessed in this mouse strain. This(More)
BACKGROUND The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR)(More)