Learn More
The molecular mechanisms responsible for selenium (Se) tolerance and hyperaccumulation were studied in the Se hyperaccumulator Stanleya pinnata (Brassicaceae) by comparing it with the related secondary Se accumulator Stanleya albescens using a combination of physiological, structural, genomic, and biochemical approaches. S. pinnata accumulated 3.6-fold more(More)
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to(More)
The ascomycete fungus Mycosphaerella graminicola is the causal agent of Septoria Tritici Blotch disease of wheat and can grow as yeast-like cells or as hyphae depending on environmental conditions. Hyphal growth is however essential for successful leaf infection. A T-DNA mutagenesis screen performed on haploid spores identified a mutant, which can undergo(More)
The photosynthetic efficiency of C3 plants suffers from the reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) with O2 instead of CO2 , leading to the costly process of photorespiration. Increasing the concentration of CO2 around Rubisco is a strategy used by photosynthetic prokaryotes such as cyanobacteria for more efficient(More)
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though(More)
BACKGROUND AND AIMS Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available(More)
The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this(More)
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles(More)
Selenium (Se) hyperaccumulator plants can concentrate the toxic element Se up to 1% of shoot (DW) which is known to protect hyperaccumulator plants from generalist herbivores. There is evidence for Se-resistant insect herbivores capable of feeding upon hyperaccumulators. In this study, resistance to Se was investigated in seed chalcids and seed beetles(More)
Potassium (K(+) ) is the most important cationic nutrient for all living organisms. Vacuolar two-pore K(+) (TPK) channels are important players in the regulation of cellular levels of K(+) but have not been characterised in rice. In order to assess the role of OsTPKb, a K(+) selective ion channel predominantly expressed in the tonoplast of small vacuoles,(More)