Jean Claude Nunes

Learn More
Recent developments in analysis methods on the non-linear and non-stationary data have received large attention by the image analysts. In 1998, Huang introduced the empirical mode decomposition (EMD) in signal processing. The EMD approach, fully unsupervised, proved reliable monodimensional (seismic and biomedical) signals. The main contribution of our(More)
The main contribution of our approach is to apply the Hilbert-Huang Transform (which consists of two parts: (a) Empirical Mode Decomposition (EMD), and (b) the Hilbert spectral analysis) to texture analysis. The EMD is locally adaptive and suitable for analysis of non-linear or non-stationary processes. This one-dimensional decomposition technique extracts(More)
We report here on image texture analysis and on numerical simulation of fractional Brownian textures based on the newly emerged Empirical Mode Decomposition (EMD). EMD introduced by N.E. Huang et al. is a promising tool to non-stationary signal representation as a sum of zero-mean AM-FM components called Intrinsic Mode Functions (IMF). Recent works(More)
The present paper describes a new and efficient method for registration of retinal angiogram. The presence of noise, the variations in the background, and the temporal variation of fluorescence level poses serious problems in obtaining a robust registration of the retinal image. Here, a multiscale registration scheme is proposed which comprises of three(More)
Empirical Mode Decomposition (EMD) is an emerging topic in signal processing research, applied in various practical fields due in particular to its data-driven filter bank properties. In this paper, a novel EMD approach called X-EMD (eXtended-EMD) is proposed, which allows for a straightforward decomposition of monoand multivariate signals without any(More)
Retinal fundus photographs are employed as standard diagnostic tools in ophthalmology. Serial photographs of the flow of fluorescein and indocyanine green (ICG) dye are used to determine the areas of the retinal lesions. For objective measurements of features, the registration of the images is a necessity. In this paper, we employ optimization techniques(More)
In this paper, we present a Bayesian maximum a posteriori method for multi-slice helical CT reconstruction based on an L0-norm prior. It makes use of a very low number of projections. A set of surrogate potential functions is used to successively approximate the L0-norm function while generating the prior and to accelerate the convergence speed. Simulation(More)
This study introduces a new approach based on Bidimensional Empirical Mode Decomposition (BEMD) to extract texture features at multiple scales or spatial frequencies. Moreover, it can resolve the intrawave frequency modulation provided the frequency modulation. This decomposition, obtained by the bidimensional sifting process, plays an important role in the(More)
In this paper, we propose some recent works on data analysis and synthesis based on Empirical Mode Decomposition (EMD). Firstly, a direct 2D extension of original Huang EMD algorithm with application to texture analysis, and fractional Brownian motion synthesis. Secondly, an analytical version of EMD based on PDE in 1D-space is presented. We proposed an(More)