Learn More
Here we report that in staurosporine-induced apoptosis of HeLa cells, Bid, a BH3 domain containing protein, translocates from the cytosol to mitochondria. This event is associated with a change in conformation of Bax which leads to the unmasking of its NH2-terminal domain and is accompanied by the release of cytochrome c from mitochondria. A similar finding(More)
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane(More)
Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the(More)
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane.(More)
Mitochondria are present as tubular organelles in neuronal projections. Here, we report that mitochondria undergo profound fission in response to nitric oxide (NO) in cortical neurons of primary cultures. Mitochondrial fission by NO occurs long before neurite injury and neuronal cell death. Furthermore, fission is accompanied by ultrastructural damage of(More)
Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains(More)
The apoptotic protein tBid is effective in promoting both leakage and lipid mixing in liposomes composed of cardiolipin and phosphatidylcholine at a molar ratio of 1:2 in the presence of calcium. When half of the phosphatidylcholine component of these liposomes is replaced with phosphatidylethanolamine, a lipid that promotes negative membrane curvature, the(More)
The mitochondrial inner membrane consists of two domains, inner boundary membrane and cristae membrane that are connected by crista junctions. Mitofilin/Fcj1 was reported to be involved in formation of crista junctions, however, different views exist on its function and possible partner proteins. We report that mitofilin plays a dual role. Mitofilin is part(More)
Decapitated Hydra regenerate their heads via morphallaxis, i.e., without significant contributions made by cell proliferation or interstitial stem cells. Indeed, Hydra depleted of interstitial stem cells regenerate robustly, and Wnt3 from epithelial cells triggers head regeneration. However, we find a different mechanism controlling regeneration after(More)
Mitochondria are dynamic organelles, the morphology of which results from an equilibrium between two opposing processes, fusion and fission. Mitochondrial fusion relies on dynamin-related GTPases, the mitofusins (MFN1 and 2) in the outer mitochondrial membrane and OPA1 (optic atrophy 1) in the inner mitochondrial membrane. Apart from a role in the(More)