Jean Claude Iehl

Learn More
This paper presents a novel and fast technique to combine interleaved sampling and deferred shading on a GPU. The core idea of this paper is quite simple. Interleaved sample patterns are computed in a non-interleaved deferred shading process. The geometric buffer (G-buffer) which contains all of the pixel information is actually split into several separate(More)
We present Linear Efficient Antialiased Displacement and Reflectance (LEADR) mapping, a reflectance filtering technique for displacement mapped surfaces. Similarly to LEAN mapping, it employs two mipmapped texture maps, which store the first two moments of the displacement gradients. During rendering, the projection of this data over a pixel is used to(More)
This paper presents a new sampling strategy to achieve interactive global illumination on one commodity computer. The goal is to propose an efficient numerical stochastic scheme which can be well adapted to a fast rendering algorithm. As we want to provide an efficient sampling strategy to handle difficult settings without sacrificing performance in common(More)
We introduce a novel fitting procedure that takes as input an arbitrary material, possibly anisotropic, and automatically converts it to a microfacet BRDF. Our algorithm is based on the property that the distribution of microfacets may be retrieved by solving an eigenvector problem that is built solely from backscattering samples. We show that the(More)
We present Metropolis Instant Radiosity (MIR), an unbiased algorithm to solve the Light Transport problem. MIR is a hybrid technique which consists in representing the incoming radiance field by a set of Virtual Point Lights (VPLs) and in computing the response of all sensors in the scene (i.e. camera captors) by accumulating their contributions. In(More)
Realistic rendering research focuses on generating images that should be perceived the same way as a real scene. We will describe a physically based spectral framework where energy, materials and light field are wavelength dependent. To reduce the computational load we also make use of the high variations of the human vision sensitivity to adapt the(More)
Directional regularization offers great potential to improve the convergence rates of Monte-Carlo-based global illumination algorithms. In this paper, we show how it can be applied successfully by combining unbiased bidirectional strategies, photon mapping, and biased directional regularization.
This poster presents a new method to evaluate visibility from a point cloud by using a meshless statistical representation. The resulting evaluation uses much less memory than previous work while still producing high quality images, making it suitable for memory limited systems. The obtained results are exposed through the evaluation of shadow maps using a(More)
Interactive visualization is a very convenient tool to explore complex scientific data or to try different parameter settings for a given processing algorithm. In this article, we present a tool to efficiently analyze the curvature tensor on the boundary of potentially large and dynamic digital objects (mean and Gaussian curvatures, principal curvatures,(More)