Learn More
The proximity operator of a convex function is a natural extension of the notion of a projection operator onto a convex set. This tool, which plays a central role in the analysis and the numerical solution of convex optimization problems, has recently been introduced in the arena of inverse problems and, especially, in signal processing, where it has become(More)
We propose a two-dimensional generalization to the M-band case of the dual-tree decomposition structure (initially proposed by Kingsbury and further investigated by Selesnick) based on a Hilbert pair of wavelets. We particularly address: 1) the construction of the dual basis and 2) the resulting directional analysis. We also revisit the necessary(More)
A simple construction of an orthonormal basis starting with a so called mother wavelet, together with an efficient implementation gained the wavelet decomposition easy acceptance and generated a great research interest in its applications. An orthonormal basis may not, however, always be a suitable representation of a signal, particularly when time (or(More)
The use of multicomponent images has become widespread with the improvement of multisensor systems having increased spatial and spectral resolutions. However, the observed images are often corrupted by an additive Gaussian noise. In this paper, we are interested in multichannel image denoising based on a multiscale representation of the images. A(More)
Total variation has proven to be a valuable concept in connection with the recovery of images featuring piecewise smooth components. So far, however, it has been used exclusively as an objective to be minimized under constraints. In this paper, we propose an alternative formulation in which total variation is used as a constraint in a general convex(More)
A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well as other(More)
We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An important feature of the algorithm is that the Lipschitzian operators present in the formulation can be processed individually via explicit steps, while the set-valued(More)
Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, namely how to find a good regularizer. While total variation introduces staircase effects, wavelet-domain regularization brings other artefacts, e.g., ringing. However, a(More)
In this paper, we are interested in the classical problem of restoring data degraded by a convolution and the addition of a white Gaussian noise. The originality of the proposed approach is twofold. First, we formulate the restoration problem as a nonlinear estimation problem leading to the minimization of a criterion derived from Stein's unbiased quadratic(More)