Learn More
Basal cell carcinoma, the most frequent human skin cancer, arises from activating hedgehog (HH) pathway mutations; however, little is known about the temporal changes that occur in tumour-initiating cells from the first oncogenic hit to the development of invasive cancer. Using an inducible mouse model enabling the expression of a constitutively active(More)
Sox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in humans, we show that Sox9 is expressed from the earliest step of tumor formation in a(More)
Aneuploidy is found in most solid tumours, but it remains unclear whether it is the cause or the consequence of tumorigenesis. Using Plk4 overexpression (PLK4OE) during epidermal development, we assess the impact of centrosome amplification and aneuploidy on skin development and tumorigenesis. PLK4OE in the developing epidermis induced centrosome(More)
The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells,(More)
Stem cell gene therapy followed by transplantation into damaged regions of the skin has been successfully used to treat genetic skin blistering disorder. Usually, many stem cells are virally transduced to obtain a sufficient number of genetically corrected cells required for successful transplantation, as genetic insertion in every stem cell cannot be(More)
  • 1