Jean-Christophe Houde

Learn More
We have developed a tractometer: an online evaluation system for tractography processing pipelines. One can now evaluate the end effects on fiber tracts of different acquisition parameters (b-value, number of directions, denoising or not, averaging or not), different local estimation techniques (tensor, q-ball, spherical deconvolution, spherical wavelets)(More)
We have developed the Tractometer: an online evaluation and validation system for tractography processing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using different acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball, spherical deconvolution) and different tracking(More)
BACKGROUND The brain functions as an integrated multi-networked organ. Complex neurocognitive functions are not attributed to a single brain area but depend on the dynamic interactions of distributed brain areas operating in large-scale networks. This is especially important in the field of neurosurgery where intervention within a spatially localized area(More)
INTRODUCTION Several neuroimaging studies have shown that visuospatial imagery is associated with a multitude of activation nodes spanning occipital, parietal, temporal and frontal brain areas. However, the anatomical connectivity profile linking these areas is not well understood. Specifically, it is unknown whether cortical areas activated during(More)
In recent years, there has been ever-increasing interest in combining functional magnetic resonance imaging (fMRI) and diffusion magnetic resonance imaging (dMRI) for better understanding the link between cortical activity and connectivity, respectively. However, it is challenging to detect and validate fMRI activity in key sub-cortical areas such as the(More)
Many different tractography approaches and corresponding isolated evaluation attempts have been presented over the last years, but a comparative and quantitative evaluation of tractography algorithms still remains a challenge, particularly in-vivo. The recently presented evaluation framework Tractometer is the first attempt to approach this challenge in a(More)
A single diffusion MRI streamline fiber tracking dataset may contain hundreds of thousands, and often millions of streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute, but also difficult to visualize and hard to store on disk (especially when dealing with a collection of brains). These problems call(More)
  • 1