Jean-Christophe Billeter

Learn More
Social interactions depend on individuals recognizing each other, and in this context many organisms use chemical signals to indicate species and sex. Cuticular hydrocarbon signals are used by insects, including Drosophila melanogaster, to distinguish conspecific individuals from others. These chemicals also contribute to intraspecific courtship and mating(More)
Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The(More)
BACKGROUND The social life of animals depends on communication between individuals. Recent studies in Drosophila melanogaster demonstrate that various behaviors are influenced by social interactions. For example, courtship is a social interaction mediated by pheromonal signaling that occurs more frequently during certain times of the day than others. In(More)
BACKGROUND How the central nervous system (CNS) develops to implement innate behaviors remains largely unknown. Drosophila male sexual behavior has long been used as a model to address this question. The male-specific products of fruitless (fru) are pivotal to the emergence of this behavior. These putative transcription factors, containing one of three(More)
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions,(More)
Understanding how genes influence behavior, including sexuality, is one of biology's greatest challenges. Much of the recent progress in understanding how single genes can influence behavior has come from the study of innate behaviors in the fruit fly Drosophila melanogaster. In particular, the elaborate courtship ritual performed by the male fly has(More)
Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other(More)
One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer(More)
Male sexual behavior in the fruit fly Drosophila melanogaster is regulated by fruitless (fru), a sex-determination gene specifying the synthesis of BTB-Zn finger proteins that likely function as male-specific transcriptional regulators. Expression of fru in the nervous system specifies male sexual behavior and the muscle of Lawrence (MOL), an abdominal(More)
The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less is known about its sex-nonspecific functions. We have(More)