Jean Cavarelli

Learn More
By analyzing the gene expression profile between tumor cells and revertant counterparts that have a suppressed malignant phenotype, we previously reported a significant down-regulation of translationally controlled tumor protein (TCTP) in the revertants. In the present study, we derived, by using the H1 parvovirus as a selective agent, revertants from three(More)
The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates(More)
Translationally controlled tumor protein (TCTP) is a potential target for cancer therapy. It functions as a growth regulating protein implicated in the TSC1-TSC2 -mTOR pathway or a guanine nucleotide dissociation inhibitor for the elongation factors EF1A and EF1Bbeta. Accumulating evidence indicates that TCTP also functions as an antiapoptotic protein,(More)
The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and(More)
Aminoacyl-RNA synthetases can be divided into two classes according to structural features inferred from sequence alignments. This classification correlates almost perfectly with the attachment of the amino acid to the 2'-OH (class I) or 3'-OH (class II) group of the terminal adenosine. Six subgroups of higher homology can be inferred from sequence(More)
Simple RNA animal viruses generally enter cells through receptor-mediated endocytosis followed by acid pH dependent release and translocation of RNA across the endosomal membrane. The T = 3 nodaviruses contain prefabricated pentameric helical bundles that are cleaved from the remainder of the subunits by an assembly-dependent auto-proteolysis and they are(More)
The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including(More)
E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the(More)
Binding of elongation factor Spt6 to Iws1 provides an effective means for coupling eukaryotic mRNA synthesis, chromatin remodelling and mRNA export. We show that an N-terminal region of Spt6 (Spt6N) is responsible for interaction with Iws1. The crystallographic structures of Encephalitozoon cuniculi Iws1 and the Iws1/Spt6N complex reveal two conserved(More)
Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a(More)