Jean Canaday

Learn More
Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in(More)
The assembly of the higher plant cytoskeleton poses several fundamental questions. Since different microtubule arrays are successively assembled during the cell cycle in the absence of centrosomes, we can ask how these arrays are assembled and spatially organized. Two hypotheses are under debate. Either multiple nucleation sites are responsible for the(More)
The small subunit (SSU) of ribulose 1-5 bisphosphate carboxylase/oxygenase is a 15 kd protein in Euglena gracilis. The protein is synthesized as a 130 kd precursor as shown by immunoprecipitation of in vitro translation products and confirmed by immunoprecipitation of in vivo pulse-labeled Euglena proteins. From the published SSU amino acid sequence, an(More)
Polyadenylation is a multifunctional post-transcriptional modification that is best known for stabilizing eukaryotic mRNAs and promoting their translation. However, the primordial role of polyadenylation is to target RNAs for degradation by 3' to 5' exoribonucleases. Polyadenylation-assisted RNA degradation contributes to post-transcriptional control in the(More)
Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA(More)
The molecular basis of microtubule nucleation is still not known in higher plant cells. This process is better understood in yeast and animals cells. In the yeast spindle pole body and the centrosome in animal cells, gamma-tubulin small complexes and gamma-tubulin ring complexes, respectively, nucleate all microtubules. In addition to gamma-tubulin, Spc98p(More)
The vitopine Ti plasmid pTiS4 of Agrobacterium vitis has an unusual T-DNA organization. The pTiS4 oncogenes, localized by screening selected pTiS4 clones for growth-inducing activity, are localized on three T-DNAs, whereas in all other characterized Ti plasmids one or two T-DNAs are found. The nucleotide sequences and predicted amino acid sequences of the(More)
We have cloned and analyzed alpha-, beta- and gamma-tubulin genes from Euglena gracilis. The gamma-tubulin genes are 6-10 times longer than the alpha- and beta-tubulin genes, owing to the presence of numerous introns. These introns are all of the conventional type, whereas the alpha- and beta-tubulin genes contain both conventional and non-conventional(More)
Plant mitochondria are particularly prone to the production of both defective and cryptic transcripts as a result of the complex organisation and mode of expression of their genome. Cryptic transcripts are generated from intergenic regions due to a relaxed control of transcription. Certain intergenic regions are transcribed at higher rates than genuine(More)