Jean-Baptiste Thibaud

Learn More
SKOR, a K+ channel identified in Arabidopsis, displays the typical hydrophobic core of the Shaker channel superfamily, a cyclic nucleotide-binding domain, and an ankyrin domain. Expression in Xenopus oocytes identified SKOR as the first member of the Shaker family in plants to be endowed with outwardly rectifying properties. SKOR expression is localized in(More)
Sexual reproduction in plants requires elongation of the pollen tube through the transmitting tissues toward the ovary. Tube growth rate is a major determinant of pollen competitive ability. We report that a K(+) channel of the Shaker family in Arabidopsis, SPIK, plays an important role in pollen tube development. SPIK was found to be specifically expressed(More)
The AKT2 K(+) channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we(More)
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by(More)
The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report(More)
Grapevine (Vitis vinifera), the genome sequence of which has recently been reported, is considered as a model species to study fleshy fruit development and acid fruit physiology. Grape berry acidity is quantitatively and qualitatively affected upon increased K(+) accumulation, resulting in deleterious effects on fruit (and wine) quality. Aiming at(More)
Assembly of plant Shaker subunits as heterotetramers, increasing channel functional diversity, has been reported. Here we focus on a new interaction, between AKT2 and KAT2 subunits. The assembly as AKT2/KAT2 heterotetramers is demonstrated by (i) a strong signal in two-hybrid tests with intracytoplasmic C-terminal regions, (ii) the effect of KAT2 on AKT2(More)
Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed(More)
Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K(+), are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the(More)
Plant outward-rectifying K+ channels mediate K+ efflux from guard cells during stomatal closure and from root cells into the xylem for root-shoot allocation of potassium (K). Intriguingly, the gating of these channels depends on the extracellular K+ concentration, although the ions carrying the current are derived from inside the cell. This K+ dependence(More)