Learn More
SKOR, a K+ channel identified in Arabidopsis, displays the typical hydrophobic core of the Shaker channel superfamily, a cyclic nucleotide-binding domain, and an ankyrin domain. Expression in Xenopus oocytes identified SKOR as the first member of the Shaker family in plants to be endowed with outwardly rectifying properties. SKOR expression is localized in(More)
Sexual reproduction in plants requires elongation of the pollen tube through the transmitting tissues toward the ovary. Tube growth rate is a major determinant of pollen competitive ability. We report that a K(+) channel of the Shaker family in Arabidopsis, SPIK, plays an important role in pollen tube development. SPIK was found to be specifically expressed(More)
Microscopic pores present in the epidermis of plant aerial organs, called stomata, allow gas exchanges between the inner photosynthetic tissue and the atmosphere. Regulation of stomatal aperture, preventing excess transpirational vapor loss, relies on turgor changes of two highly differentiated epidermal cells surrounding the pore, the guard cells.(More)
The AKT2 K(+) channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we(More)
Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K(weak) channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by(More)
We have studied the mechanism of the response to iron deficiency in rape (Brassica napus L.), taking into account our previous results: net H+ extrusion maintains a pH shift between the root apoplast and the solution, and the magnitude of the pH shift decreases as the buffering power in the solution increases. The ferric stress increased the ability of(More)
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial(More)
The Arabidopsis K(+) channel AKT2 possesses the remarkable property that its voltage threshold for activation can be either within the physiological range (gating mode 1), or shifted towards considerably more positive voltages (gating mode 2). Gating mode 1 AKT2 channels behave as delayed K(+)-selective inward rectifiers; while gating mode 2 AKT2 channels(More)
An inward Shaker K(+) channel identified in Zea mays (maize), ZmK2.1, displays strong regulation by external K(+) when expressed in Xenopus laevis (African clawed frog) oocytes or COS cells. ZmK2.1 is specifically activated by K(+) with an apparent K(m) close to 15 mM independent of the membrane hyperpolarization level. In the absence of K(+), ZmK2.1(More)
At least four genes encoding plasma membrane inward K+ channels (K(in) channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K(in) channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell K(in)(More)