Learn More
Sorghum is the second most cultivated crop in Africa and is a staple food source in many African communities. Exploiting the associated plant growth-promoting bacteria (PGPB) has potential as an agricultural biotechnology strategy to enhance sorghum growth, yield and nutritional properties. Therefore this study aimed to evaluate factors that shape bacterial(More)
22 Aims: To assess the impact of winery wastewater (WW) on biological sand filter (BSF) 23 bacterial community structures, and to evaluate if BSFs can constitute alternative and valuable 24 treatment-processes to remediate WW. 25 Methods and Results: During 112 days, WW were used to contaminate a BSF mesocosm 26 (length 173 cm / width 106 cm / depth 30 cm).(More)
Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970's, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an(More)
The sand dunes and inter-dune zones of the hyper-arid central Namib Desert represent heterogeneous soil habitats. As little is known about their indigenous edaphic bacterial communities, we aimed to evaluate their diversity and factors of assembly and hypothesized that soil physicochemistry gradients would strongly shape dune/interdune communities. We(More)
Agri effluents such as winery or olive mill wastewaters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic(More)
Micro-organisms inhabiting animal guts benefit from a protected and nutrient-rich environment while assisting the host with digestion and nutrition. In this study we compare, for the first time, the bacterial and fungal gut communities of two species of the small desert dung beetle genus Pachysoma feeding on different diets: the detritivorous P. endroedyi(More)
Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil(More)
The Namib Desert in southwest Africa is hyperarid and composed of distinct microbial communities affected by a longitudinal aridity gradient. Here, we report four soil metaviromes from the Namib Desert, assessed using deep sequencing of metavirome libraries prepared from DNA extracted from gravel plain surface soils.
Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP(More)
The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial(More)