Learn More
In this paper, we study a model for calcium buffering with bistable nonlinearity. We present some results on the stability of equilibrium states and show that there exists a threshold phenomenon in our model. In comparing with the model without buffers, we see that stationary buffers cannot destroy the asymptotic stability of the associated equilibrium(More)
Accumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC) characterized by surface antigen CD44 and c-KIT (CD117). It has been experimentally demonstrated that a microRNA,(More)
Traveling waves of calcium are widely observed under the condition that the free cytosolic calcium is buffered. Thus it is of physiological interest to determine how buffers affect the properties of calcium waves. Here we summarise and extend previous results on the existence, uniqueness and stability of traveling wave solutions of the buffered bistable(More)
It is known that curvature relation plays a key role in the propagation of two-dimensional waves in an excitable model. Such a relation is believed to obey the eikonal equation for typical excitable models (e.g., the FitzHugh-Nagumo (FHN) model), which states that the relation between the normal velocity and the local curvature is approximately linear. In(More)