Jayshree Aiyar

Learn More
The types of reactive intermediates generated upon reduction of chromium(VI) by glutathione or hydrogen peroxide and the resulting DNA damage have been determined. In vitro, reaction of chromium(VI) with glutathione led to formation of two chromium(V) complexes and the glutathione thiyl radical. When chromium(VI) was reacted with DNA in the presence of(More)
Incubation of rat liver cytosolic or microsomal fractions with chromium(VI) led to a dramatic decrease in chromium(VI) mutagenicity, as determined by the Ames Salmonella assay using the TA100 tester strain. The cytosol-dependent decrease in chromium(VI) mutagenicity was found to be counteracted in the presence of dicumarol, an inhibitor of the cytosolic(More)
The reaction of chromium(VI) with hydrogen peroxide was studied in the presence of glutathione. In vitro, reaction of chromium(VI) with hydrogen peroxide alone led to production of hydroxyl radical as the significant reactive intermediate, while reaction of chromium(VI) with glutathione led to formation of two chromium(V)-glutathione complexes and the(More)
We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin g1 and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known proteinbinding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in their free(More)
Since chromium(VI) is unreactive toward DNA under physiological conditions in vitro, the ability of carcinogenic chromium(VI) compounds to damage DNA depends on the presence of cellular redox components that reduce chromium(VI) to reactive species capable of interacting with DNA. We have examined the role of glutathione and hydrogen peroxide in(More)
Since chromium(VI) is unreactive toward DNA under physiological conditions in vitro, the ability of carcinogenic chromium(VI) compounds to damage DNA depends on the presence of cellular redox components that reduce chromium(VI) to reactive species capable of interacting with DNA. We have examined the role of glutathione and hydrogen peroxide in(More)
We report studies of the contribution of DNA structure, holding the sequence constant, to the affinity of calicheamicin gamma(1)(I) and its aryltetrasaccharide moiety for DNA. We used polynucleotide chains as models of known protein-binding sequences [the catabolite activator protein (CAP) consensus sequence, AP-1 and cAMP response element (CRE) sites] in(More)
  • 1