Learn More
Caveolae are vesicular organelles that represent a sub-compartment of the plasma membrane. Caveolins (Cav-1, -2 and -3) and flotillins (FLO-1 and FLO-2 [also known as epidermal surface antigens (ESAs)] are two families of mammalian caveolae-associated integral membrane proteins. Although a caveolin gene family has recently been described in the invertebrate(More)
Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch(More)
The importance of the N-terminal region of HIV gp120 conserved domain 1 (gp120-C1) to envelope function has been examined by alanine-scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry; envelope expression, processing, and incorporation; and gp120 association with gp41. With respect to the wild-type gp120, mutational(More)
Based on mutagenesis and structural studies of human immunodeficiency virus (HIV) envelope proteins, the loop region of gp41 is thought to directly interact with gp120. The importance of the HIV gp41 loop region to envelope function has been systematically examined by alanine scanning of all gp41 loop residues and the subsequent characterization of the(More)
The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of the anthrax disease. The fourth domain of PA (PA-D4) is responsible for initial binding of the anthrax toxin to the cellular receptor, and thus, is an attractive target for structure-based drug therapies. A synthetic gene for PA-D4 has been prepared by recursive(More)
Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the(More)
The importance of the HIV gp120 conserved domain 5 (gp120-C5) to envelope function has been examined by alanine scanning mutagenesis and subsequent characterization of the mutagenic effects on viral entry and envelope expression, processing, and incorporation, as well as gp120 association with gp41. With respect to the wild-type gp120, mutational effects on(More)
The importance of the HIV gp41 conserved disulfide loop to envelope function has been examined by mutational and functional analyses. Based on a luciferase-reporter entry assay, mutants gp41-CC/AA (C598A/C604A) and gp41-Delta (deletion of residues 596-606) result in a nonfunctional envelope protein. Western blot analysis shows both mutants to be properly(More)
The tumor suppressor ARF inhibits cell growth in response to oncogenic stress in a p53-dependent manner. Also, there is an increasing appreciation of ARF's ability to inhibit cell growth via multiple p53-independent mechanisms, including its ability to regulate the E2F pathway. We have investigated the interaction between the tumor suppressor ARF and DP1,(More)
On the basis of mutagenesis, biochemical, and structural studies, heptad repeat 1 of HIV gp41 (HR1) has been shown to play numerous critical roles in HIV entry, including interacting with gp120 in prefusion states and interacting with gp41 heptad repeat 2 (HR2) in the fusion state. Moreover, HR1 is the site of therapeutic intervention by enfuviritide, a(More)