Learn More
The formalin model is widely used for evaluating the effects of analgesic compounds in laboratory animals. Injection of formalin into the hind paw induces a biphasic pain response; the first phase is thought to result from direct activation of primary afferent sensory neurons, whereas the second phase has been proposed to reflect the combined effects of(More)
Voltage changes across the cell membrane control the gating of many cation-selective ion channels. Conserved from bacteria to humans, the voltage-gated-ligand superfamily of ion channels are encoded as polypeptide chains of six transmembrane-spanning segments (S1-S6). S1-S4 functions as a self-contained voltage-sensing domain (VSD), in essence a positively(More)
Expression of the type II voltage-dependent sodium channel gene is restricted to neurons by a silencer element active in nonneuronal cells. We have cloned cDNA coding for a transcription factor (REST) that binds to this silencer element. Expression of a recombinant REST protein confers the ability to silence type II reporter genes in neuronal cell types(More)
Transient receptor potential (TRP) proteins are cation-selective channels that function in processes as diverse as sensation and vasoregulation. Mammalian TRP channels that are gated by heat and capsaicin (>43 degrees C; TRPV1 (ref. 1)), noxious heat (>52 degrees C; TRPV2 (ref. 2)), and cooling (< 22 degrees C; TRPM8 (refs 3, 4)) have been cloned; however,(More)
Neural-specific expression of a sodium channel mini-gene has been shown to be mediated by a 28 bp silencer element, RE1, located in the 5' flanking region of the gene. This element is active exclusively in cell lines that do not express the endogenous brain type II sodium channel gene, including fibroblast, skeletal muscle, and certain neuronal cell lines.(More)
TRPA1 is a nonselective cation channel expressed by nociceptors. Although it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even(More)
Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular(More)
In the protochordate Halocynthia roretzi, voltage-activated sodium current undergoes a change in kinetics within 48 hr of fertilization. Molecular cloning and microinjection of antisense DNA into single cells suggest that the kinetic changes are due to the increased expression of a putative neural-specific sodium channel gene, TuNa I. TuNa I gene(More)
To gain insight into the origin of the molecular diversity of voltage-gated sodium channels (NaVs), a putative sodium channel gene (TuNa2) was cloned from the protochordate ascidian. TuNa2 showed two unusual features in its primary structure; (1) lysine in the P-region of the third repeat, a critical site determining ion selectivity, was changed to glutamic(More)
The four sperm-specific CatSper ion channel proteins are required for hyperactivated motility and male fertility, and for Ca(2+) entry evoked by alkaline depolarization. In the absence of external Ca(2+), Na(+) carries current through CatSper channels in voltage-clamped sperm. Here we show that CatSper channel activity can be monitored optically with the(More)