Jaya Sivaswami Tyagi

Learn More
DevR regulon function is believed to be crucial for the survival of Mycobacterium tuberculosis during dormancy. In this study, we undertook a comprehensive analysis of the DevR regulon. All the regulon promoters were assigned to four classes based on the number of DevR binding sites (Dev boxes). A minimum of two boxes are essential for complete interaction(More)
BACKGROUND Nucleic acid amplification techniques are being used increasingly in diagnosing tuberculosis. In developing countries clinical samples are often stored for subsequent analysis since molecular tests are conducted at only a limited number of laboratories. This study was conducted to assess the speed at which mycobacteria undergo autolysis and free(More)
DevR is a transcriptional regulator that mediates the genetic response of Mycobacterium tuberculosis to oxygen limitation and nitric oxide exposure. devR is co-transcribed along with devS, which encodes its cognate sensor kinase, and an upstream gene, Rv3134c. The transcriptional activity of this operon was characterized by primer extension, transcriptional(More)
BACKGROUND Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O(2) depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy(More)
BACKGROUND DevR (also called as DosR) is a two-domain response regulator of the NarL subfamily that controls dormancy adaptation of Mycobacterium tuberculosis (M. tb). In response to inducing signals such as hypoxia and ascorbic acid, the N-terminal receiver domain of DevR (DevR(N)) is phosphorylated at Asp54. This results in DevR binding to DNA via its(More)
BACKGROUND The DevR(DosR) regulon is implicated in hypoxic adaptation and virulence of Mycobacterium tuberculosis. The present study was designed to decipher the impact of perturbation in DevR-mediated signaling on these properties. METHODOLOGY/PRINCIPAL FINDINGS M. tb complemented (Comp) strains expressing different levels of DevR were constructed in(More)
BACKGROUND The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat(More)
BACKGROUND Tuberculous meningitis (TBM) is the most common form of neurotuberculosis and the fifth most common form of extrapulmonary TB. Early diagnosis and prompt treatment are the cornerstones of effective disease management. The accurate diagnosis of TBM poses a challenge due to an extensive differential diagnosis, low bacterial load and paucity of(More)
DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may(More)