Jay Z. Parrish

Learn More
Although dendrite arborization patterns are hallmarks of neuronal type and critical determinants of neuronal function, how dendritic arbors take shape is still largely unknown. Transcription factors play important roles in specifying neuronal types and have a profound influence on dendritic arbor size and complexity. The space that a dendritic arbor(More)
Dendrite arborization patterns are critical determinants of neuronal function. To explore the basis of transcriptional regulation in dendrite pattern formation, we used RNA interference (RNAi) to screen 730 transcriptional regulators and identified 78 genes involved in patterning the stereotyped dendritic arbors of class I da neurons in Drosophila. Most of(More)
Precise patterning of dendritic fields is essential for neuronal circuit formation and function, but how neurons establish and maintain their dendritic fields during development is poorly understood. In Drosophila class IV dendritic arborization neurons, dendritic tiling, which allows for the complete but non-overlapping coverage of the dendritic fields, is(More)
Chromosomal DNA degradation is critical for cell death execution and is a hallmark of apoptosis, yet little is known about how this process is executed. Using an RNAi-based functional genomic approach, we have identified seven additional cell death-related nucleases (crn genes), which along with two known nucleases (CPS-6 and NUC-1) comprise at least two(More)
In addition to establishing dendritic coverage of the receptive field, neurons need to adjust their dendritic arbors to match changes of the receptive field. Here, we show that dendrite arborization (da) sensory neurons establish dendritic coverage of the body wall early in Drosophila larval development and then grow in precise proportion to their(More)
Dendrites can be maintained for extended periods of time after they initially establish coverage of their receptive field. The long-term maintenance of dendrites underlies synaptic connectivity, but how neurons establish and then maintain their dendritic arborization patterns throughout development is not well understood. Here, we show that the NAD synthase(More)
Restarting stalled replication forks partly depends on the break-induced recombination pathway, in which a DNA double-stranded break (DSB) is created on the stalled replication fork to initiate the downstream recombination cascades. Single-stranded DNA gaps accumulating on stalled replication forks are potential targets for endonucleases to generate DSBs.(More)
Oligonucleosomal fragmentation of chromosomes in dying cells is a hallmark of apoptosis. Little is known about how it is executed or what cellular components are involved. We show that crn-1, a Caenorhabditis elegans homologue of human flap endonuclease-1 (FEN-1) that is normally involved in DNA replication and repair, is also important for apoptosis.(More)
Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da)(More)
Chromosome fragmentation is one of the major biochemical hallmarks of apoptosis. However, until recently, its roles in apoptosis and mechanisms of action remained elusive. Recent biochemical and genetic studies have shown that chromosome fragmentation is a complex biochemical process that involves a plethora of conserved nucleases with distinct nuclease(More)