Learn More
Although dendrite arborization patterns are hallmarks of neuronal type and critical determinants of neuronal function, how dendritic arbors take shape is still largely unknown. Transcription factors play important roles in specifying neuronal types and have a profound influence on dendritic arbor size and complexity. The space that a dendritic arbor(More)
Dendrite arborization patterns are critical determinants of neuronal function. To explore the basis of transcriptional regulation in dendrite pattern formation, we used RNA interference (RNAi) to screen 730 transcriptional regulators and identified 78 genes involved in patterning the stereotyped dendritic arbors of class I da neurons in Drosophila. Most of(More)
In addition to establishing dendritic coverage of the receptive field, neurons need to adjust their dendritic arbors to match changes of the receptive field. Here, we show that dendrite arborization (da) sensory neurons establish dendritic coverage of the body wall early in Drosophila larval development and then grow in precise proportion to their(More)
Dendrites can be maintained for extended periods of time after they initially establish coverage of their receptive field. The long-term maintenance of dendrites underlies synaptic connectivity, but how neurons establish and then maintain their dendritic arborization patterns throughout development is not well understood. Here, we show that the NAD synthase(More)
Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da)(More)
Precise patterning of dendritic fields is essential for neuronal circuit formation and function, but how neurons establish and maintain their dendritic fields during development is poorly understood. In Drosophila class IV dendritic arborization neurons, dendritic tiling, which allows for the complete but non-overlapping coverage of the dendritic fields, is(More)
Chromosome fragmentation is one of the major biochemical hallmarks of apoptosis. However, until recently, its roles in apoptosis and mechanisms of action remained elusive. Recent biochemical and genetic studies have shown that chromosome fragmentation is a complex biochemical process that involves a plethora of conserved nucleases with distinct nuclease(More)
As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain(More)
The directional flow of information in neurons depends on compartmentalization: dendrites receive inputs whereas axons transmit them. Axons and dendrites likewise contain structurally and functionally distinct subcompartments. Axon/dendrite compartmentalization can be attributed to neuronal polarization, but the developmental origin of subcompartments in(More)
Dendrites exhibit enormous diversity in form and can differ in size by several orders of magnitude even in a single animal. However, whether neurons with large dendrite arbors have specialized mechanisms to support their growth demands is unknown. To address this question, we conducted a genetic screen for mutations that differentially affected growth in(More)