Jong Ho Won27
Ward R Drennan24
27Jong Ho Won
24Ward R Drennan
Learn More
This paper presents an analysis of the effects of the electrode-to-fiber distance on the temporal response properties of an auditory nerve fiber stimulated by electric current pulses. This analysis was based upon results from a computational model of a mammalian auditory nerve fiber axon having 50 nodes of Ranvier, each consisting of 130 stochastic sodium(More)
This paper presents a comparison of computational algorithms to simulate action potentials using stochastic sodium channels. Four algorithms are compared in single-node models: Strassberg and DeFelice (1993) (SD), Rubinstein (1995) (R), Chow and White (1996) (CW), and Fox (1997) (F). Neural responses are simulated to a simple and a preconditioned monophasic(More)
To discriminate fine anatomical features in the inner ear, it has been desirable that spiral computed tomography (CT) may perform beyond their current resolution limits with the aid of digital image processing techniques. In this paper, we develop a blind deblurring approach to enhance image resolution retrospectively without complete knowledge of the(More)
PURPOSE OF REVIEW This review summarizes the history of cochlear implant signal processing and provides the rationale underlying current approaches. Present strategies are explained and recent research findings are summarized. It is suggested how these results may drive future advancements in signal processing. RECENT FINDINGS Substantial advances have(More)
OBJECTIVE To evaluate the binaural listening advantages for speech in quiet and in noise and to localize sound when independently programmed binaural cochlear implants are used, and to determine whether ears with different hearing ability and duration of profound deafness perform differently with cochlear implants as well as to what extent preimplant(More)
Speech perception ability in noise is one of the most practical measures of success with a cochlear implant; however, with experience, this ability can change dramatically over time, making it a less than ideal tool for comparing performance among different processing strategies. This study examined performance on a spectral discrimination task and compared(More)
The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were(More)
OBJECTIVE This study aimed at testing the post-hoc validity of the previously reported predictive index for postoperative cochlear implant performance, based on preoperative duration of deafness, and speech reception. STUDY DESIGN Adult patients with postlingual severe to profound hearing loss, who were implanted with Cochlear Corporation CI-22 and CI-24(More)
Cochlear implant (CI) users can achieve remarkable speech understanding, but there is great variability in outcomes that is only partially accounted for by age, residual hearing, and duration of deafness. Results might be improved with the use of psychophysical tests to predict which sound processing strategies offer the best potential outcomes. In(More)
Experienced users of the Clarion cochlear implant were tested acutely with the HiResolution (HiRes) and HiRes Fidelity120 (F120) processing strategies. Three psychophysically-based tests were used including spectral-ripple discrimination, Schroeder-phase discrimination and temporal modulation detection. Three clinical outcome measures were used including(More)