Learn More
We recorded action potentials from single auditory-nerve fibers of cats using monophasic current pulses delivered by a monopolar intracochlear electrode. These simple stimuli provided a means of investigating basic properties and hypotheses of electrical excitation. Standard micropipette recording techniques were used. Responses to anodic (positive) and(More)
The probabilistic gating of voltage-dependent ion channels is a source of electrical 'channel noise' in neurons. This noise has long been implicated in limiting the reliability (repeatability) of neuronal responses to repeated presentations of identical stimuli. More recently, it has been shown to increase the range of spiking behaviors exhibited in some(More)
OBJECTIVE To evaluate the binaural listening advantages for speech in quiet and in noise and to localize sound when independently programmed binaural cochlear implants are used, and to determine whether ears with different hearing ability and duration of profound deafness perform differently with cochlear implants as well as to what extent preimplant(More)
This paper presents an analysis of the effects of the electrode-to-fiber distance on the temporal response properties of an auditory nerve fiber stimulated by electric current pulses. This analysis was based upon results from a computational model of a mammalian auditory nerve fiber axon having 50 nodes of Ranvier, each consisting of 130 stochastic sodium(More)
We recorded electrically evoked compound action potentials (EAPs) from guinea pigs and cats using monophasic current pulses delivered by a monopolar intracochlear electrode. By using simple stimuli, we sought results that could shed light on basic excitation properties of the auditory nerve. In these acute experiments, the recording electrode was placed(More)
Charge-balanced, biphasic stimulus pulses are commonly used in implantable cochlear prostheses as they can be safely delivered to living tissue. However, monophasic stimuli are more efficient (i.e. producing lower thresholds) and likely provide more spatially selective excitation of nerve fibers. We examined the neural responses to monophasic,(More)
The relationship between electrically evoked single-fiber action potentials and the electrically evoked compound action potential of the auditory nerve is of interest to those attempting to model such responses with computational techniques. It also relates to efforts to exploit the gross potentials that can now be recorded by some implantable cochlear(More)
We describe a novel signal processing strategy for cochlear implants designed to emphasize stochastic independence across the excited neural population. The strategy is based on the observation that high rate pulse trains may produce random spike patterns in auditory nerve fibers that are statistically similar to those produced by spontaneous activity in(More)
OBJECTIVES To evaluate possible binaural listening advantages for speech in quiet, speech in noise, and for localization in a group of postlingually deafened adults with two cochlear implants functioning independently after 3 mo experience. DESIGN Nine postlingually deafened subjects who had received a Cochlear Corporation CI24M implant in each ear were(More)
The purpose of this study was to gain a greater understanding of the electrically evoked compound action potential (EAP) responses to pulse train stimulation. Analysis of EAP amplitude responses suggested that an alternating pattern varied depending upon stimulus level, interpulse interval (IPI), stimulus waveform, and stimulus polarity. Stimulus(More)