Learn More
This paper describes the Altera Stratix II™ logic and routing architecture. This architecture features a novel adaptive logic module (ALM) that is based on a 6-LUT, but can be partitioned into two smaller LUTs to efficiently implement circuits containing a range of LUT sizes that arises in conventional synthesis flows. This provides a performance(More)
This paper proposes a new adaptable FPGA logic element based on fracturable 6-LUTs, which fundamentally alters the longstanding belief that a 4-LUT is the most efficient area/delay tradeoff. We will describe theory and benchmarking results showing a 15% performance increase with 12% area decrease vs. a standard BLE4. The ALM structure is one of a number of(More)
As programmable logic grows more viable for implementing full design systems, performance has become a primary issue for programmable logic device architectures. This paper presents the high-level design of Dali, a PLD architecture specifically aimed at performance-driven applications. We will present significant portions of the background research that(More)
Architects of programmable logic devices (PLDs) face several challenges when optimizing a new device family for low manufacturing cost. When given an aggressive die-size goal, functional blocks that seem otherwise insignificant become targets for area reduction. Once low die cost is achieved, it is seen that testing and packaging costs must be considered.(More)
Structured-ASIC design provides a midway point between FPGA and cell-based ASIC design for performance, area and power, but suffers from the same increasing verification burden associated with cell-based design. In this paper we address the verification issue with a methodology and fabric to directly tie FPGA prototype and functional in-system verification(More)
  • 1