Learn More
Current pediatric heart valve replacement options are suboptimal because they are incapable of somatic growth. Thus, children typically have multiple surgeries to replace outgrown valves. In this study, we present the in vivo function and growth potential of our tissue-engineered pediatric tubular valve. The valves were fabricated by sewing two(More)
A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting “leaflets.” The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially(More)
Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position(More)
Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in(More)
Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. Here we present an 'off-the-shelf' vascular graft grown from donor fibroblasts in a fibrin gel to address this critical unmet need. In a(More)
The authors inadvertently omitted Richard Bianco, who provided consultation for the experimental surgical services, from the author list. This has now been corrected in both the PDF and HTML versions of the Article. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article(More)
  • 1