Learn More
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical(More)
Development has boosted the GeoFEST system for simulating the faulted crust from a local desktop research application to a community model deployed on advanced cluster platforms, including an Apple G5, Intel P4, SGI Altix 3000, and HP Itaniam 2 clusters. GeoFEST uses unstructured tetrahedral meshes to follow details of stress evolution, fault slip, and(More)
Service-based geographic information system (GIS) technologies can enable an open-architecture cyberinfrastructure to provide standards-compliant data products and computing services for both earthquake research and disaster planning and response. Here, a service-based GIS framework is evaluated using examples from two earthquake science projects: QuakeSim(More)
We describe the architecture and implementation of the Solid Earth Research Virtual Observatory (SERVO)’s Complexity Computational Environment. We base our design on a globally scalable distributed “cyber-infrastructure,” or Grid, built around a Web Services-based approach consistent with the extended Web Service Interoperability (WS-I+) model. In order to(More)
We are developing simulation and analysis tools in order to develop a solid Earth Science framework for understanding and studying active tectonic and earthquake processes. The goal of QuakeSim and its extension, the Solid Earth Research Virtual Observatory (SERVO), is to study the physics of earthquakes using state-of-the-art modeling, data manipulation,(More)
The QuakeSim Problem Solving Environment uses a web-services approach to unify and deploy diverse remote data sources and processing services within a browser environment. Here we focus on the high-performance crustal modelling applications that will be included in this set of remote but interoperable applications. PARK is a model for unstable slip on a(More)
Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move(More)
Computer simulations will be key to substantial gains in understanding the earthquake process. Emerging information technologies make possible a major change in the way computers are used and data is accessed. An outline of a realizable computational infrastructure includes standardization of data accessibility, harnessing high-performance computing(More)
We are using Web (Grid) service technology to demonstrate the assimilation of multiple distributed data sources (a typical data grid problem) into a major parallel high-performance computing earthquake forecasting code. Such a linkage of Geoinformatics with Geocomplexity demonstrates the value of the Solid Earth Research Virtual Observatory (SERVO) Grid(More)
In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the-art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and(More)