Jay L. Nadeau

Learn More
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five(More)
We examined lethal and sublethal effects of imidacloprid on Osmia lignaria (Cresson) and clothianidin on Megachile rotundata (F.) (Hymenoptera: Megachilidae). We also made progress toward developing reliable methodology for testing pesticides on wild bees for use in pesticide registration by using field and laboratory experiments. Bee larvae were exposed to(More)
Biologically conjugated quantum dots (QDs) have shown great promise as multiwavelength fluorescent labels for on-chip bioassays and eukaryotic cells. However, use of these photoluminescent nanocrystals in bacteria has not previously been reported, and their large size (3 to 10 nm) makes it unclear whether they inhibit bacterial recognition of attached(More)
Quantum dots (QDs) rendered water soluble for biological applications are usually passivated by several inorganic and/or organic layers in order to increase fluorescence yield. However, these coatings greatly increase the size of the particle, making uptake by microorganisms impossible. We find that adenine- and AMP-conjugated QDs are able to label bacteria(More)
Particle shape and size determine the physicochemical and optoelectronic properties of nanoscale materials, including optical absorption, fluorescence, and electric and magnetic moments. It is thus desirable to be able to synthesize and separate various particle shapes and sizes. Biosynthesis using microorganisms has emerged as a more ecologically friendly,(More)
We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these(More)
Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain,(More)
Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a(More)
The perennial springs at Gypsum Hill (GH) and Colour Peak (CP), situated at nearly 80 degrees N on Axel Heiberg Island in the Canadian high Arctic, are one of the few known examples of cold springs in thick permafrost on Earth. The springs emanate from deep saline aquifers and discharge cold anoxic brines rich in both sulfide and sulfate. Grey-coloured(More)
Chemical modification of the surface of CdSe/ZnS quantum dots (QDs) with small molecules or functional ligands often alters the characteristics of these particles. For instance, dopamine conjugation quenches the fluorescence of the QDs, which is a property that can be exploited for sensing applications if the conjugates are taken up into living cells.(More)