Jay A Switzer

Learn More
Many water districts have recently shifted from free chlorine (in the form of HOCl/OCl-) to monochloramine (NH2-Cl) as a disinfectant for drinking water to lower the concentration of chlorinated hydrocarbon byproducts in the water. There is concern that the use of NH2Cl disinfectant may lead to higher Pb levels in drinking water. In this study, the(More)
Many biomolecules are chiral--they can exist in one of two enantiomeric forms that only differ in that their structures are mirror images of each other. Because only one enantiomer tends to be physiologically active while the other is inactive or even toxic, drug compounds are increasingly produced in an enantiomerically pure form using solution-phase(More)
Molybdenum disulfide nanowires and nanoribbons have been synthesized by a two-step, electrochemical/chemical synthetic method. In the first step, MoO(x) wires (a mixture of MoO(2) and MoO(3)) were electrodeposited size-selectively by electrochemical step-edge decoration on a highly oriented pyrolytic graphite (HOPG) surface. Then, MoO(x) precursor wires(More)
Epitaxial Prussian blue (PB) films are deposited electrochemically onto a Au(110) substrate. High-resolution X-ray diffraction shows that the PB films have a [111] out-of-plane orientation. The very large lattice mismatch of 148% is reduced to about 1% by the formation of (1 x 2)PB(111)[onemacr;10]//(6 x 5)Au(110)[onemacr;10] and (1 x(More)
Half-metallic ferrimagnetic materials such as Fe(3)O(4) are of interest for use in spintronic devices. These devices exploit both the spin and charge of an electron in spin-dependent charge transport. Epitaxial thin films of Fe(3)O(4) have been grown on the three low-index planes of gold by electrodeposition. On Au(110), a [110] Fe(3)O(4) orientation that(More)
Nanometer-scale layered structures based on thallium(III) oxide were electrodeposited in a beaker at room temperature by pulsing the applied potential during deposition. The conducting metal oxide samples were superlattices, with layers as thin as 6.7 nanometers. The defect chemistry was a function of the applied overpotential: High overpotentials favored(More)
We show that electrodeposited films of δ-Bi2O3 in a Pt/δ-Bi2O3/Au cell exhibit unipolar resistance switching. After being formed at a large electric field of 40 MV/m, the cell can be reversibly switched between a low resistance state (156 Ω) and a high resistance state (1.2 GΩ) by simply cycling between SET and RESET voltages of the same polarity. Because(More)
Single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk(More)
Defect-chemistry magnetite superlattices and compositional superlattices in the magnetite/zinc ferrite system are electrodeposited as epitaxial films onto single-crystal Au(111). The defect-chemistry superlattices have alternating nanolayers with different Fe(III)/Fe(II) ratios, whereas the compositional superlattices have alternating nanolayers with(More)