Jawaharlal M. Patel

Learn More
The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we(More)
The effect of nitric oxide (NO) exposure and sulfhydryl-reactive chemicals on L-arginine transport in pulmonary artery endothelial cells was evaluated. Exposure of pulmonary artery endothelial cells to 7.5 ppm (0.4 microM) NO for 4 h resulted in a significant (p < 0.05) reduction of Na(+)-dependent but not Na(+)-independent L-arginine transport. More(More)
We evaluated the specific effects of acrolein on sulfhydryl status and plasma membrane-dependent functions of cultured pulmonary artery endothelial cells. Acrolein exposure caused a dose-dependent increase in lactate dehydrogenase (LDH) release and decreases in reduced glutathione (GSH) and protein sulfhydryl (P-SH) content, whereas oxidized glutathione(More)
Rats given a single ip injection of p-xylene suffered 65% loss of pulmonary microsomal p-xylene hydroxylase activity. The activity was protected by pretreating the rats with phenobarbital, which increased hepatic p-xylene hydroxylase and cytosolic aldehyde dehydrogenase activities, but had no effect on alcohol dehydrogenase activity in hepatic cytosol.(More)
Persistent inhibition of cytochrome-c oxidase, a terminal enzyme of the mitochondrial electron transport chain, by excessive nitric oxide (NO) derived from inflammation, polluted air, and tobacco smoke contributes to enhanced oxidant production and programmed cell death or apoptosis of lung cells. We sought to determine whether the long-term exposure of(More)
RATIONALE An activated vasoconstrictive, proliferative, and fibrotic axis of the renin angiotensin system (angiotensin-converting enzyme [ACE]/angiotensin [Ang]II/AngII type 1 receptor) has been implicated in the pathophysiology of pulmonary fibrosis (PF) and pulmonary hypertension (PH). The recent discovery of a counterregulatory axis of the renin(More)
Nitric oxide (NO) synthase is a hemoprotein containing several cysteinyl residues including thiolate as its proximal heme ligand. Exposure to NO is known to induce S-nitrosylation of protein thiols and modulation of enzyme activities, including the catalytic activity of NO synthase. Because S-nitrosylation of vicinal thiols promotes disulfide formation, we(More)
Angiotensin (ANG) IV stimulation of pulmonary artery (PA) endothelial cells (PAECs) but not of PA smooth muscle cells (PASMCs) resulted in significant increased production of cGMP in PASMCs. ANG IV receptors are not present in PASMCs, and PASMC nitric oxide synthase activity was not altered by ANG IV. ANG IV caused a dose-dependent vasodilation of(More)
Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-alpha/Akt (PKB-alpha) activities, as well as(More)
We examined whether nitric oxide (NO)-induced inhibition of thioredoxin (Thx) expression is regulated by a mechanism mediated by a transcription factor, i.e., nuclear factor-kappaB (NF-kappaB), in cultured porcine pulmonary artery endothelial cells (PAEC) and in mouse lungs. Western blot analysis revealed that IkappaB-alpha content was reduced by 20 and 60%(More)