Javier Rosell

Learn More
Magnetic induction spectroscopy (MIS) aims at the contactless measurement of the passive electrical properties (PEP) sigma, epsilon, and mu of biological tissues via magnetic fields at multiple frequencies. Whereas previous publications focus on either the conductive or the magnetic aspect of inductive measurements, this article provides a synthesis of both(More)
Electrical properties of myocardial tissue are anisotropic due to the complex structure of the myocardial fiber orientation and the distribution of gap junctions. For this reason, measured myocardial impedance may differ depending on the current distribution and direction with respect to myocardial fiber orientation and, consequently, according to the(More)
Magnetic induction tomography (MIT) is a contactless method for mapping the electrical conductivity of tissue by measuring the perturbation of an alternating magnetic field with appropriate receiver coils. Reconstruction algorithms so far suggested for biomedical applications are based on weighted backprojection, hence requiring tube-shaped zones of(More)
A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also(More)
In situ electroporation of adherent cells provides significant advantages with respect to electroporation systems for suspension cells, such as causing minimal stress to cultured cells and simplifying and saving several steps within the process. In this study, a new electrode assembly design is shown and applied to in situ electroporate adherent cell lines(More)
  • 1