Javier Rosell

Learn More
Magnetic induction spectroscopy (MIS) aims at the contactless measurement of the passive electrical properties (PEP) sigma, epsilon, and mu of biological tissues via magnetic fields at multiple frequencies. Whereas previous publications focus on either the conductive or the magnetic aspect of inductive measurements, this article provides a synthesis of both(More)
Magnetic induction tomography (MIT) is a contactless method for mapping the electrical conductivity of tissue. MIT is based on the perturbation of an alternating magnetic field by a conducting object. The perturbation is detected by a voltage change in a receivercoil. At physiologically interesting frequencies (10 kHz-10 MHz) and conductivities (< 2 S(More)
We evaluated analytically and experimentally the performance of a planar gradiometer as a sensing element in a system for magnetic induction tomography. A system using an excitation coil and a planar gradiometer was compared against a system with two coils. We constructed one excitation coil, two different sensing elements and a high-resolution phase(More)
The measurement of hepatic iron overload is of particular interest in cases of hereditary hemochromatosis or in patients subject to periodic blood transfusion. The measurement of plasma ferritin provides an indirect estimate but the usefulness of this method is limited by many common clinical conditions (inflammation, infection, etc). Liver biopsy provides(More)
Long-term electrical impedance measurements are affected by specific errors. Electrode failure, changes in its impedance due to aging, and postural changes are among the most important. We analyse errors due to electrode replacement and body postural changes. Electrode replacement errors can cause impedance changes up to 5% of basal value. This is one of(More)
Electrical properties of myocardial tissue are anisotropic due to the complex structure of the myocardial fiber orientation and the distribution of gap junctions. For this reason, measured myocardial impedance may differ depending on the current distribution and direction with respect to myocardial fiber orientation and, consequently, according to the(More)
Healed myocardial infarction has been recognized by its particular tissue electrical impedance spectrum measured with intramural needle electrodes in animal models. The aim of this study was to develop a percutaneous approach for in vivo recognition of areas of healed myocardial infarction by measuring myocardial electrical impedance with an intracavitary(More)
Dynamic and multifrequency imaging methods have been demonstrated both theoretically and experimentally. Multifrequency methods are able to produce images of static structures inside the measured object. Data collection systems, however, are affected by errors due to their non-ideal frequency behaviour. If the frequencies used in the measurement were close(More)
Static images of the human body using electrical impedance tomography techniques can be obtained by measuring at two or more different frequencies. The frequencies used depend on the application, and their selection depends on the frequency behaviour of the impedance for the target tissue. An analysis using available data and theoretical models for tissue(More)