Javier R. Movellan

Learn More
A number of current face recognition algorithms use face representations found by unsupervised statistical methods. Typically these methods find a set of basis images and represent faces as a linear combination of those images. Principal component analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pairwise(More)
Modern machine learning-based approaches to computer vision require very large databases of hand labeled images. Some contemporary vision systems already require on the order of millions of images for training (e.g., Omron face detector [9]). New Internet-based services allow for a large number of labelers to collaborate around the world at very low cost.(More)
Spontaneous facial expressions differ from posed expressions in both which muscles are moved, and in the dynamics of the movement. Advances in the field of automatic facial expression measurement will require development and assessment on spontaneous behavior. Here we present preliminary results on a task of facial action detection in spontaneous facial(More)
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions. We report results on a series of experiments comparing recognition engines, including AdaBoost, support vector machines, linear discriminant analysis. We also explored feature selection techniques, including the use of(More)
We present the Computer Expression Recognition Toolbox (CERT), a software tool for fully automatic real-time facial expression recognition, and officially release it for free academic use. CERT can automatically code the intensity of 19 different facial actions from the Facial Action Unit Coding System (FACS) and 6 different protoypical facial expressions.(More)
We present a systematic comparison of machine learning methods applied to the problem of fully automatic recognition of facial expressions, including AdaBoost, support vector machines, and linear discriminant analysis. Each video-frame is first scanned in real-time to detect approximately upright-frontal faces. The faces found are scaled into image patches(More)
Just storing the Hessian H (the matrix of second derivatives @2E=@wi@wj of the error E with respect to each pair of weights) of a large neural network is difficult. Since a common use of a large matrix like H is to compute its product with various vectors, we derive a technique that directly calculates Hv, where v is an arbitrary vector. This allows H to be(More)
Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This(More)
Computer animated agents and robots bring a social dimension to human computer interaction and force us to think in new ways about how computers could be used in daily life. Face to face communication is a real-time process operating at a a time scale in the order of 40 milliseconds. The level of uncertainty at this time scale is considerable, making it(More)