Learn More
Recognizing when computer users are stressed can help reduce their frustration and prevent a large variety of negative health conditions associated with chronic stress. However, measuring stress non-invasively and continuously at work remains an open challenge. This work explores the possibility of using a pressure-sensitive keyboard and a capacitive mouse(More)
Nine call center employees wore a skin conductance sensor on the wrist for a week at work and reported stress levels of each call. Although everyone had the same job profile, we found large differences in how individuals reported stress levels, with similarity from day to day within the same participant, but large differences across the participants. We(More)
The recent emergence of comfortable wearable sensors has focused almost entirely on monitoring physical activity, ignoring opportunities to monitor more subtle phenomena, such as the quality of social interactions. We argue that it is compelling to address whether physiological sensors can shed light on quality of social interactive behavior. This work(More)
In this study, we created and evaluated a computer vision based system that automatically encouraged, recognized and counted smiles on a college campus. During a ten-week installation, passersby were able to interact with the system at four public locations. The aggregated data was displayed in real time in various intuitive and interactive formats on a(More)
— This work studies the feasibility of using visual information to automatically measure the engagement level of TV viewers. Previous studies usually utilize expensive and invasive devices (e.g., eye trackers or physiological sensors) in controlled settings. Our work differs by only using an RGB video camera in a naturalistic setting, where viewers move(More)
—This work explores the feasibility of using sensors embedded in Google Glass, a head-mounted wearable device, to measure physiological signals of the wearer. In particular, we develop new methods to use Glass's accelerometer, gyroscope, and camera to extract pulse and respiratory rates of 12 participants during a controlled experiment. We show it is(More)
Hot flashes are experienced by over 70% of menopausal women. Criteria to classify hot flashes from physiologic signals show variable performance. The primary aim was to compare conventional criteria to Support Vector Machines (SVMs), an advanced machine learning method, to classify hot flashes from sternal skin conductance. Thirty women with > or =4 hot(More)
Stress is considered to be a modern day " global epidemic"; so given the widespread nature of this problem, it would be beneficial if solutions that help people to learn how to cope better with stress were scalable beyond what individual or group therapies can provide today. Therefore, in this work, we study the potential of smart-phones as a pervasive(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract—We present a novel sensor system and interface that enables an individual to capture and reflect on their daily activities. The wearable system gathers both physiological responses and visual context through the use of a wearable(More)