Learn More
The success of mobile robots, and particularly of those interfacing with humans in daily environments (e.g., assistant robots), relies on the ability to manipulate information beyond simple spatial relations. We are interested in semantic information, which gives meaning to spatial information like images or geometric maps. We present a multi-hierarchical(More)
This work aims at improving real-time motion control and dead-reckoning of wheeled skid-steer vehicles by considering the effects of slippage, but without introducing the complexity of dynamics computations in the loop. This traction scheme is found both in many off-the-shelf mobile robots due to its mechanical simplicity and in outdoor applications due to(More)
We develop a scalable deep non-parametric generative model by augmenting deep Gaussian processes with a recognition model. Inference is performed in a novel scalable variational framework where the variational posterior distributions are reparametrized through a multilayer perceptron. The key aspect of this reformula-tion is that it prevents the(More)
The lack of publicly accessible datasets with a reliable ground truth has prevented in the past a fair and coherent comparison of different methods proposed in the mobile robot Simultaneous Localization and Mapping (SLAM) literature. Providing such a ground truth becomes specially challenging in the case of visual SLAM, where the world model is(More)
This paper introduces a dataset gathered entirely in urban scenarios with a car equipped with one stereo camera and five laser scanners, among other sensors. One distinctive feature of the present dataset is the existence of high-resolution stereo images grabbed at high rate (20 fps) during a 36.8 km trajectory, which allows the benchmarking of a variety of(More)
Recently, hybrid maps that combine metric and topological world information have been proposed as a powerful representation of mobile robot environments. Among others, these maps are of special interest for efficiently managing large-scale environments, and for accurate localization. For achieving that, local geometric maps are stored in the nodes of a(More)
The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the exploration of the parameter space to occur sequentially. Often, it is desirable to simultaneously propose(More)
Sensor data is a core component of big data. The abundance of sensor data combined with advances in data integration and data mining entails a great opportunity to develop innovative applications. However, data about our movements, our energy consumption or our biometry are personal data that we should have full control over. Likewise , companies face a(More)
We present glasses: Global optimisation with Look-Ahead through Stochastic Simulation and Expected-loss Search. The majority of global optimisation approaches in use are myopic, in only considering the impact of the next function value; the non-myopic approaches that do exist are able to consider only a handful of future evaluations. Our novel algorithm,(More)
Intravenous extension of renal cell carcinoma remains one of the most intense debate topics in urologic oncology. In the absence of effective alternative treatment, complete surgical removal of the primary tumor with its extension along the vena cava is the only hope for a potential cure. For this reason, an aggressive approach has been established as the(More)