Javier Gámez García

Learn More
This contribution presents a machine vision system capable of revealing, detecting and characterizing defects on non-plane transparent surfaces. Because in this kind of surface, transparent and opaque defects can be found, special lighting conditions are required. Therefore, the cornerstone of this machine vision is the innovative lighting system developed.(More)
This paper presents a novel lighting system to reveal surface defects on transparent parts with non-planar surface. Thanks to this system, the defect segmentation is straightforward and fast to compute and so a real-time inspection of these parts is possible. To aid in the conception of the imaging conditions, the lighting system is completely described and(More)
In this work, we present implementation and experiment of the theory of dynamic force sensing for robotic manipulators. In the robot manipulation context, end-effector contact forces may be difficult to measure due to tool interference, yet indirect measurement such as from wrist-mounted force sensors provide force measurement contaminated by inertial(More)
Force feedback is necessary for accurate force control in robotic manipulators, and thus far, wrist force/torque (F/T) sensors have been used. But an important problem arises when only these types of sensors are used. In a dynamic situation where the manipulator moves in either free or constrained space, the interaction forces and moments at the contact(More)
In this paper, robotic sensor fusion of acceleration and force measurement is considered. We discuss the problem of using accelerometers close to the end-effectors of robotic manipulators and how it may improve the force control performance. We introduce a new model-based observer approach to sensor fusion of information from various different sensors.(More)
In this work, we present implementation and experiment of the theory of dynamic force sensing for robotic manipulators, which uses a sensor fusion technique in order to extract the contact force exerted by the end-effector of the manipulator from those measured by a wrist force sensor, which are corrupted by the inertial forces on the end-effector. We(More)
In this paper, we propose a method for self-calibration of a robotic manipulator force observer, which fuses information from force sensors and accelerometers in order to estimate the contact force exerted by a manipulator to its environment, by means of active motion. In robotic operation, during contact transition accelerometers and force sensors play a(More)