Javier Álvarez

Learn More
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show(More)
Targeted recombinant aequorins represent to date the most specific means of monitoring [Ca2+] in subcellular organelles (Rizzuto, R., Simpson, A. W. M., Brini, M., and Pozzan, T. (1992) Nature 358, 325-328; Brini, M., Murgia, M., Pasti, L., Picard, D., Pozzan, T., and Rizzuto, R. (1993) EMBO J. 12, 4813-4819; Kendall, J. M., Dormer, R. L., and Campbell, A.(More)
Direct monitoring of the free Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) is an important but still unsolved experimental problem. We have shown that a Ca(2+)-sensitive photoprotein, aequorin, can be addressed to defined subcellular compartments by adding the appropriate targeting sequences. By engineering a new aequorin chimera with(More)
This article focuses on local protein synthesis as a basis for maintaining axoplasmic mass, and expression of plasticity in axons and terminals. Recent evidence of discrete ribosomal domains, subjacent to the axolemma, which are distributed at intermittent intervals along axons, are described. Studies of locally synthesized proteins, and proteins encoded by(More)
Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH > or = 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been(More)
The Ca(2+)-dependent K+ channel of human red cells was inhibited with high affinity by several imidazole antimycotics which are potent inhibitors of cytochrome P-450. IC50 values were (in microM): clotrimazole, 0.05; tioconazole, 0.3; miconazole, 1.5; econazole, 1.8. Inhibition of the channel was also found with other drugs with known cytochrome P-450(More)
Remodeling of fibrillar collagen in mouse tissues has been widely attributed to the activity of collagenase-3 (matrix metalloproteinase-13 (MMP-13)), the main collagenase identified in this species. This proposal has been largely based on the repeatedly unproductive attempts to detect the presence in murine tissues of interstitial collagenase (MMP-1), a(More)
Collagenase 3 (MMP-13) is a recently identified member of the matrix metalloproteinase (MMP) gene family that is expressed at high levels in diverse human carcinomas and in articular cartilage from arthritic patients. In addition to its expression in pathological conditions, collagenase 3 has been detected in osteoblasts and hypertrophic chondrocytes during(More)
Changes in the free calcium concentration of the endoplasmic reticulum ([Ca2+]er) play a central role controlling cellular functions like contraction, secretion or neuronal signaling. We recently reported that recombinant aequorin targeted to the endoplasmic reticulum (ER) [Montero M., Brini M., Marsault R. et al. Monitoring dynamic changes in free Ca2+(More)
The filling state of the intracellular Ca2+ stores of rat thymocytes regulates plasma membrane permeability to Mn2+, used here as a Ca2+ surrogate for plasma membrane Ca2+ channels. Emptying of the Ca2+ stores accelerated Mn2+ entry about 10-fold, and refilling with Ca2+ restored low Mn2+ permeability. The acceleration of Mn2+ entry observed in cells with(More)