Learn More
We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We(More)
Results of the Ðrst spherically diverging, hydrodynamically unstable laboratory experiments of relevance to supernovae (SNe) are reported. The experiments are accomplished by using laser radiation to explode a hemispherical capsule, having a perturbed outer surface, which is embedded within a volume of low-density foam. The evolution of the experiment, like(More)
We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the(More)
We investigate hydrodynamic instability of accelerating ionization fronts using two dimensional hydrodynamic simulations that include detailed energy de-position and release due to the absorption of UV radiation, recombination of hydrogen, radiative molecular cooling, and magnetic pressure. We consider linear perturbation growth and find that the(More)
  • 1