Javad Fotouhi

  • Citations Per Year
Learn More
In minimally invasive interventions assisted by C-arm imaging, there is a demand to fuse the intra-interventional 2D C-arm image with pre-interventional 3D patient data to enable surgical guidance. The commonly used intensity-based 2D/3D registration has a limited capture range and is sensitive to initialization. We propose to utilize an opto/X-ray C-arm(More)
Intensity based registration is a challenge when images to be registered have insufficient amount of information in their overlapping region. Especially, in the absence of dominant structures such as strong edges in this region, obtaining a solution that satisfies global structural consistency becomes difficult. In this work, we propose to exploit the vast(More)
X-ray radiography is the most readily available imaging modality and has a broad range of applications that spans from diagnosis to intra-operative guidance in cardiac, orthopedics, and trauma procedures. Proper interpretation of the hidden and obscured anatomy in X-ray images remains a challenge and often requires high radiation dose and imaging from(More)
Cone-Beam Computed Tomography (CBCT) is an important 3D imaging technology for orthopedic, trauma, radiotherapy guidance, angiography, and dental applications. The major limitation of CBCT is the poor image quality due to scattered radiation, truncation, and patient movement. In this work, we propose to incorporate information from a co-registered(More)
This work presents a mixed reality environment for orthopaedic interventions that provides a 3D overlay of Cone-beam CT images, surgical site, and real-time tool tracking. The system uses an RGBD camera attached to the detector plane of a mobile C-arm, which is a typical device to acquire X-Ray images during surgery. Calibration of the two devices is done(More)
Precise needle placement is an important task during several medical procedures. Ultrasound imaging is often used to guide the needle toward the target region in soft tissue. This task remains challenging due to the user’s dependence on image quality, limited field of view, moving target, and moving needle. In this paper, we present a novel dual-robot(More)
In many orthopedic surgeries, there is a demand for correctly placing medical instruments (e.g., K-wire or drill) to perform bone fracture repairs. The main challenge is the mental alignment of X-ray images acquired using a C-arm, the medical instruments, and the patient, which dramatically increases in complexity during pelvic surgeries. Current solutions(More)