Jaume Torres

Learn More
A structural model of pentameric phospholamban (Plb) in a lipid bilayer has been derived using a combination of experimental data, obtained from ATR-FTIR site-directed dichroism, and the implementation of the resulting restraints during a molecular dynamics simulation. Plb (residues 24-52) has been synthesised incorporating a new label, 1-(13)C==(18)O, at(More)
The N-terminal portion of apolipoprotein A-I corresponding to the first 93 residues has been identified as the main component of apolipoprotein A-I fibrils in a form of systemic amyloidosis. We have been able to characterize the process of conformational switching and fibrillogenesis in this fragment of apolipoprotein A-I purified directly from ex vivo(More)
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is an important element against permeability of bactericidal agents, including antimicrobial peptides. However, structural determinants of antimicrobial peptides for LPS recognition are not clearly understood. Pardaxins (Pa1, Pa2, Pa3, and Pa4) are a group of(More)
Detailed site-specific information can be exceptionally useful in structural studies of macromolecules in general and proteins in particular. Such information is usually obtained from spectroscopic studies using a label/probe that can reflect on particular properties of the protein. A suitable probe must not modify the native properties of the protein, and(More)
Site-directed dichroism is an emerging technique for the determination of membrane protein structure. However, due to a number of factors, among which is the high natural abundance of (13)C, the use of this technique has been restricted to the study of small peptides. We have overcome these problems through the use of a double C-deuterated glycine as a(More)
Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology.(More)
Small increases in NO concentration can inhibit mitochondrial oxygen consumption by reacting at the binuclear haem a3/CuB oxygen reduction site of cytochrome c oxidase. Here we demonstrate that under normal turnover conditions NO reacts initially with the oxidised CuB rather than the haem a3. We propose that hydration of an initial Cu+/NO+ complex forms(More)
The reactions of nitric oxide (NO) with fully oxidized cytochrome c oxidase (O) and the intermediates P and F have been investigated by optical spectroscopy, using both static and kinetic methods. The reaction of NO with O leads to a rapid (approximately 100 s-1) electron ejection from the binuclear center to cytochrome a and CuA. The reaction with the(More)
The importance of accurately modeling membrane proteins cannot be overstated, in lieu of the difficulties in solving their structures experimentally. Often, however, modeling procedures (e.g., global searching molecular dynamics) generate several possible candidates rather then pointing to a single model. Herein we present a new approach to select among(More)
Tachyplesin-1, a disulfide stabilized beta-hairpin antimicrobial peptide, can be found at the hemocytes of horse shoe crab Tachypleus tridentatus. A cysteine deleted linear analog of tachyplesin-1 or CDT (KWFRVYRGIYRRR-NH2) contains a broad spectrum of bactericidal activity with a reduced hemolytic property. The bactericidal activity of CDT stems from(More)