Learn More
The light-induced spectral diffusion and fluorescence intermittency (blinking) of semiconductor nanocrystal quantum dots are investigated theoretically using a diffusion-controlled electron-transfer (DCET) model, where a light-induced one-dimensional diffusion process in energy space is considered. Unlike the conventional electron-transfer reactions with(More)
A mechanism involving diffusion-controlled electron transfer processes in Debye and non-Debye dielectric media is proposed to elucidate the power-law distribution for the lifetime of a blinking quantum dot. This model leads to two complementary regimes of power law with a sum of the exponents equal to 2, and to a specific value for the exponent in terms of(More)
Quantum dot-sensitized solar cells (QDSCs) constructed using cascade CdS/CdSe sensitizers and the novel tetrapod-like ZnO nanoparticles have been fabricated. The cascade co-sensitized QDSCs manifested good electron transfer dynamics and overall power conversion efficiency, compared to single CdS- or CdSe-sensitized cells. The preliminary CdS layer is not(More)
Light-induced diffusion-controlled electron transfer is proposed as an underlying mechanism for the intermittency (power law and breakdown) of a single quantum dot and ensemble-averaged fluorescence decay. The intensity decay can be approximated to a stretched exponential expression. The physical links to the free energy gap, reorganization energy,(More)
Four-dimensional (4D) imaging during structural changes are reported here using ultrafast electron microscopy (UEM). For nanostructures, the phase transition in the strongly correlated material vanadium dioxide is our case study. The transition is initiated and probed in situ, in the microscope, by a femtosecond near-infrared and electron pulses (at 120(More)
The dynamics of charge transfer at interfaces are fundamental to the understanding of many processes, including light conversion to chemical energy. Here, we report imaging of charge carrier excitation, transport, and recombination in a silicon p-n junction, where the interface is well defined on the nanoscale. The recorded images elucidate the(More)
In this review we present an overview of the experimental and theoretical development on fluorescence intermittency (blinking) and the roles of electron transfer in semiconductor crystalline nanoparticles. Blinking is a very interesting phenomenon commonly observed in single molecule/particle experiments. Under continuous laser illumination, the(More)
Quantification of energetics and kinetics for the band-edge exciton states of quantum dots and the long-lived dark state is important for better understanding of the underlying mechanism for single-particle intermittency and ensemble fluorescence intensity decay. Based on a multistate diffusion-reaction model by extending our previous studies, we analyze(More)
We demonstrated that graphene oxide material could be used as a highly efficient saturable absorber for the Q-switched Nd:GdVO4 laser. A novel and low-cost graphene oxide (GO) absorber was fabricated by a vertical evaporation technique and high viscosity of polyvinyl alcohol (PVA) aqueous solution. A piece of GO/PVA absorber, a piece of round quartz, and an(More)
We use a new (to our knowledge) fabrication method of a single-walled carbon nanotube (SWCNT) absorber without polymer to sustain high-power illumination. Using a series of saturable absorbers (SAs) incorporating different amounts of SWCNTs, we demonstrate mode-locking for a Nd:GdVO₄ laser in the 1 μm spectral range. Continuous-wave mode-locking (CWML)(More)